《计算机应用》唯一官方网站 ›› 2026, Vol. 46 ›› Issue (1): 85-94.DOI: 10.11772/j.issn.1001-9081.2025010126
收稿日期:2025-02-10
修回日期:2025-04-29
接受日期:2025-04-29
发布日期:2026-01-10
出版日期:2026-01-10
通讯作者:
黄瑞章
作者简介:程梓洋(2000—),男,贵州贵阳人,硕士研究生,主要研究方向:主题信息挖掘、演化聚类基金资助:
Ziyang CHENG1,2, Ruizhang HUANG1,2(
), Jingjing XUE1,2
Received:2025-02-10
Revised:2025-04-29
Accepted:2025-04-29
Online:2026-01-10
Published:2026-01-10
Contact:
Ruizhang HUANG
About author:CHENG Ziyang, born in 2000, M. S. candidate. His research interests include topic information mining, evolutionary clustering.Supported by:摘要:
针对现有的深度文档聚类方法在处理动态文档数据时,文档主题随时间演化过程中存在主题混淆和对齐不准确问题,提出一种深度演化主题聚类模型(DETCM)。DETCM可以捕捉动态文档随时间演化的主题信息,结合历史主题信息与当前时间片文档特征,发掘事件主题演化脉络,生成动态文档主题表示。具体来说,为了解决主题随时间演变时的主题混淆问题,设计了基于混合编码器的主题融合学习模块,借助前置时间片的主题信息,加强当前时间片的主题区分度与特征提取。此外,还设计了一种跨时间片的动态主题继承模块,通过将不同时间片上的主题匹配对齐,有效地将历史时间片上的主题信息融入当前时间片的类簇划分过程中。这一设计使得DETCM学习主题时能够继承并借鉴历史时间片的主题信息,有效跟踪动态文本主题持续演化的过程。基于arXiv真实演化文本文档数据集的实验结果表明,相较于深度演化聚类模型DEDC-IMAE (Deep Evolutionary Document Clustering model with Instance-level Mutual Attention Enhancement), DETCM在所有时间片上的标准化互信息(NMI)指标平均提升了3.08%(-0.37%~5.43%),验证了DETCM在动态场景中具有更好的主题演化追踪能力,能够更准确地捕捉主题的时序变化特征,实现更优的聚类性能。
中图分类号:
程梓洋, 黄瑞章, 薛菁菁. 深度演化主题聚类模型[J]. 计算机应用, 2026, 46(1): 85-94.
Ziyang CHENG, Ruizhang HUANG, Jingjing XUE. Deep evolutionary topic clustering model[J]. Journal of Computer Applications, 2026, 46(1): 85-94.
| 数据集 | 主题数 | 文档数 | |||
|---|---|---|---|---|---|
| T1 | T2 | T3 | T4 | ||
| BBC_evo | 5 | 835 | 693 | 556 | 41 |
| AMiner_evo | 3 | 1 533 | 943 | 754 | 190 |
| Reuters _evo | 4 | 584 | 4 708 | 3 765 | 943 |
| arXiv | 3 | 15 000 | 15 000 | 15 000 | 15 000 |
表1 数据集的详细信息
Tab. 1 Detailed information of datasets
| 数据集 | 主题数 | 文档数 | |||
|---|---|---|---|---|---|
| T1 | T2 | T3 | T4 | ||
| BBC_evo | 5 | 835 | 693 | 556 | 41 |
| AMiner_evo | 3 | 1 533 | 943 | 754 | 190 |
| Reuters _evo | 4 | 584 | 4 708 | 3 765 | 943 |
| arXiv | 3 | 15 000 | 15 000 | 15 000 | 15 000 |
| 数据集 | 时间片 | 评价指标 | K-means | DTM[ | ToT[ | DEC[ | IDEC[ | DEDC-IMAE[ | DETCM |
|---|---|---|---|---|---|---|---|---|---|
| BBC_evo | T1 | ACC | 98.68 | 40.84 | 42.28 | 96.88 | 97.48 | 97.12 | 98.92 |
| NMI | 95.44 | 50.66 | 48.07 | 92.13 | 92.68 | 92.90 | 96.41 | ||
| ARI | 96.73 | 32.21 | 30.05 | 92.46 | 93.82 | 93.09 | 97.31 | ||
| T2 | ACC | 90.48 | 40.98 | 50.51 | 87.01 | 90.33 | 94.09 | 95.38 | |
| NMI | 80.92 | 32.59 | 45.41 | 72.73 | 74.59 | 82.43 | 85.63 | ||
| ARI | 82.16 | 11.18 | 32.14 | 70.16 | 76.68 | 87.29 | 89.01 | ||
| T3 | ACC | 57.55 | 30.58 | 39.75 | 74.64 | 76.79 | 80.76 | 87.89 | |
| NMI | 45.66 | 12.74 | 30.07 | 52.72 | 53.85 | 65.51 | 69.28 | ||
| ARI | 36.09 | 5.65 | 18.02 | 48.68 | 50.03 | 63.76 | 70.79 | ||
| T4 | ACC | 40.43 | 32.62 | 41.84 | 63.12 | 63.12 | 75.17 | 78.72 | |
| NMI | 25.48 | 7.86 | 18.46 | 47.51 | 48.05 | 57.92 | 67.32 | ||
| ARI | 10.71 | 2.61 | 8.77 | 39.06 | 38.98 | 54.90 | 62.15 | ||
| AMiner_evo | T1 | ACC | 97.46 | 66.01 | 86.30 | 95.52 | 93.32 | 97.26 | 97.59 |
| NMI | 88.55 | 40.19 | 65.60 | 87.03 | 86.13 | 87.85 | 89.09 | ||
| ARI | 92.52 | 21.96 | 61.71 | 90.01 | 88.15 | 91.95 | 92.90 | ||
| T2 | ACC | 94.17 | 53.66 | 77.62 | 92.25 | 90.66 | 94.48 | 95.02 | |
| NMI | 77.48 | 14.84 | 50.81 | 73.20 | 68.35 | 78.19 | 81.02 | ||
| ARI | 82.78 | 9.46 | 40.92 | 77.57 | 73.42 | 83.65 | 85.17 | ||
| T3 | ACC | 71.82 | 49.73 | 69.76 | 85.94 | 87.40 | 90.05 | 92.30 | |
| NMI | 44.59 | 8.66 | 38.63 | 54.78 | 58.36 | 65.48 | 71.32 | ||
| ARI | 43.63 | 5.24 | 26.27 | 61.83 | 65.34 | 72.11 | 77.50 | ||
| T4 | ACC | 51.32 | 37.37 | 58.42 | 72.63 | 71.05 | 77.89 | 78.95 | |
| NMI | 33.29 | 2.30 | 24.51 | 34.08 | 28.15 | 40.80 | 47.29 | ||
| ARI | 27.16 | 1.25 | 11.17 | 36.16 | 31.63 | 44.05 | 45.42 | ||
| Reuters_evo | T1 | ACC | 69.69 | 87.16 | 92.98 | 68.32 | 68.32 | 69.69 | 70.03 |
| NMI | 71.42 | 79.28 | 83.63 | 68.01 | 68.13 | 71.03 | 72.50 | ||
| ARI | 58.17 | 85.37 | 88.22 | 55.34 | 55.31 | 58.17 | 58.91 | ||
| T2 | ACC | 82.05 | 79.01 | 70.94 | 72.53 | 73.55 | 76.25 | 76.47 | |
| NMI | 63.81 | 60.03 | 58.33 | 54.35 | 53.26 | 60.33 | 61.60 | ||
| ARI | 65.61 | 61.72 | 56.83 | 57.13 | 58.14 | 61.37 | 62.07 | ||
| T3 | ACC | 51.47 | 54.37 | 61.65 | 61.72 | 63.13 | 64.70 | 68.15 | |
| NMI | 32.21 | 39.54 | 45.06 | 35.65 | 35.18 | 47.61 | 50.83 | ||
| ARI | 19.17 | 30.87 | 32.47 | 30.63 | 29.72 | 41.25 | 43.00 | ||
| T4 | ACC | 48.78 | 42.74 | 67.34 | 62.21 | 65.64 | 69.17 | 70.91 | |
| NMI | 32.46 | 17.11 | 47.30 | 44.08 | 46.90 | 49.98 | 54.03 | ||
| ARI | 10.62 | 10.48 | 41.24 | 35.44 | 39.02 | 42.07 | 50.67 | ||
| arXiv | T1 | ACC | 80.07 | 55.63 | 83.00 | 86.06 | 85.67 | 86.16 | 86.86 |
| NMI | 51.60 | 21.28 | 50.82 | 56.94 | 55.79 | 58.00 | 57.78 | ||
| ARI | 52.87 | 19.90 | 55.78 | 63.17 | 62.27 | 62.91 | 64.80 | ||
| T2 | ACC | 81.05 | 59.53 | 84.38 | 87.02 | 86.18 | 87.89 | 88.34 | |
| NMI | 53.12 | 36.31 | 52.93 | 57.53 | 55.57 | 60.75 | 62.02 | ||
| ARI | 57.27 | 35.29 | 58.77 | 62.15 | 61.30 | 67.06 | 68.89 | ||
| T3 | ACC | 86.75 | 60.41 | 85.17 | 81.18 | 86.29 | 87.53 | 88.83 | |
| NMI | 57.52 | 30.62 | 54.18 | 48.32 | 58.13 | 60.20 | 63.47 | ||
| ARI | 64.15 | 32.14 | 60.49 | 53.00 | 63.53 | 65.92 | 67.49 | ||
| T4 | ACC | 79.17 | 63.81 | 84.34 | 82.91 | 84.18 | 86.37 | 88.38 | |
| NMI | 52.10 | 40.51 | 53.79 | 49.93 | 55.04 | 59.08 | 62.14 | ||
| ARI | 58.97 | 40.46 | 58.59 | 55.86 | 60.51 | 62.87 | 65.50 |
表2 所有实验数据集上的实验结果 ( %)
Tab. 2 Experimental results on all experimental datasets
| 数据集 | 时间片 | 评价指标 | K-means | DTM[ | ToT[ | DEC[ | IDEC[ | DEDC-IMAE[ | DETCM |
|---|---|---|---|---|---|---|---|---|---|
| BBC_evo | T1 | ACC | 98.68 | 40.84 | 42.28 | 96.88 | 97.48 | 97.12 | 98.92 |
| NMI | 95.44 | 50.66 | 48.07 | 92.13 | 92.68 | 92.90 | 96.41 | ||
| ARI | 96.73 | 32.21 | 30.05 | 92.46 | 93.82 | 93.09 | 97.31 | ||
| T2 | ACC | 90.48 | 40.98 | 50.51 | 87.01 | 90.33 | 94.09 | 95.38 | |
| NMI | 80.92 | 32.59 | 45.41 | 72.73 | 74.59 | 82.43 | 85.63 | ||
| ARI | 82.16 | 11.18 | 32.14 | 70.16 | 76.68 | 87.29 | 89.01 | ||
| T3 | ACC | 57.55 | 30.58 | 39.75 | 74.64 | 76.79 | 80.76 | 87.89 | |
| NMI | 45.66 | 12.74 | 30.07 | 52.72 | 53.85 | 65.51 | 69.28 | ||
| ARI | 36.09 | 5.65 | 18.02 | 48.68 | 50.03 | 63.76 | 70.79 | ||
| T4 | ACC | 40.43 | 32.62 | 41.84 | 63.12 | 63.12 | 75.17 | 78.72 | |
| NMI | 25.48 | 7.86 | 18.46 | 47.51 | 48.05 | 57.92 | 67.32 | ||
| ARI | 10.71 | 2.61 | 8.77 | 39.06 | 38.98 | 54.90 | 62.15 | ||
| AMiner_evo | T1 | ACC | 97.46 | 66.01 | 86.30 | 95.52 | 93.32 | 97.26 | 97.59 |
| NMI | 88.55 | 40.19 | 65.60 | 87.03 | 86.13 | 87.85 | 89.09 | ||
| ARI | 92.52 | 21.96 | 61.71 | 90.01 | 88.15 | 91.95 | 92.90 | ||
| T2 | ACC | 94.17 | 53.66 | 77.62 | 92.25 | 90.66 | 94.48 | 95.02 | |
| NMI | 77.48 | 14.84 | 50.81 | 73.20 | 68.35 | 78.19 | 81.02 | ||
| ARI | 82.78 | 9.46 | 40.92 | 77.57 | 73.42 | 83.65 | 85.17 | ||
| T3 | ACC | 71.82 | 49.73 | 69.76 | 85.94 | 87.40 | 90.05 | 92.30 | |
| NMI | 44.59 | 8.66 | 38.63 | 54.78 | 58.36 | 65.48 | 71.32 | ||
| ARI | 43.63 | 5.24 | 26.27 | 61.83 | 65.34 | 72.11 | 77.50 | ||
| T4 | ACC | 51.32 | 37.37 | 58.42 | 72.63 | 71.05 | 77.89 | 78.95 | |
| NMI | 33.29 | 2.30 | 24.51 | 34.08 | 28.15 | 40.80 | 47.29 | ||
| ARI | 27.16 | 1.25 | 11.17 | 36.16 | 31.63 | 44.05 | 45.42 | ||
| Reuters_evo | T1 | ACC | 69.69 | 87.16 | 92.98 | 68.32 | 68.32 | 69.69 | 70.03 |
| NMI | 71.42 | 79.28 | 83.63 | 68.01 | 68.13 | 71.03 | 72.50 | ||
| ARI | 58.17 | 85.37 | 88.22 | 55.34 | 55.31 | 58.17 | 58.91 | ||
| T2 | ACC | 82.05 | 79.01 | 70.94 | 72.53 | 73.55 | 76.25 | 76.47 | |
| NMI | 63.81 | 60.03 | 58.33 | 54.35 | 53.26 | 60.33 | 61.60 | ||
| ARI | 65.61 | 61.72 | 56.83 | 57.13 | 58.14 | 61.37 | 62.07 | ||
| T3 | ACC | 51.47 | 54.37 | 61.65 | 61.72 | 63.13 | 64.70 | 68.15 | |
| NMI | 32.21 | 39.54 | 45.06 | 35.65 | 35.18 | 47.61 | 50.83 | ||
| ARI | 19.17 | 30.87 | 32.47 | 30.63 | 29.72 | 41.25 | 43.00 | ||
| T4 | ACC | 48.78 | 42.74 | 67.34 | 62.21 | 65.64 | 69.17 | 70.91 | |
| NMI | 32.46 | 17.11 | 47.30 | 44.08 | 46.90 | 49.98 | 54.03 | ||
| ARI | 10.62 | 10.48 | 41.24 | 35.44 | 39.02 | 42.07 | 50.67 | ||
| arXiv | T1 | ACC | 80.07 | 55.63 | 83.00 | 86.06 | 85.67 | 86.16 | 86.86 |
| NMI | 51.60 | 21.28 | 50.82 | 56.94 | 55.79 | 58.00 | 57.78 | ||
| ARI | 52.87 | 19.90 | 55.78 | 63.17 | 62.27 | 62.91 | 64.80 | ||
| T2 | ACC | 81.05 | 59.53 | 84.38 | 87.02 | 86.18 | 87.89 | 88.34 | |
| NMI | 53.12 | 36.31 | 52.93 | 57.53 | 55.57 | 60.75 | 62.02 | ||
| ARI | 57.27 | 35.29 | 58.77 | 62.15 | 61.30 | 67.06 | 68.89 | ||
| T3 | ACC | 86.75 | 60.41 | 85.17 | 81.18 | 86.29 | 87.53 | 88.83 | |
| NMI | 57.52 | 30.62 | 54.18 | 48.32 | 58.13 | 60.20 | 63.47 | ||
| ARI | 64.15 | 32.14 | 60.49 | 53.00 | 63.53 | 65.92 | 67.49 | ||
| T4 | ACC | 79.17 | 63.81 | 84.34 | 82.91 | 84.18 | 86.37 | 88.38 | |
| NMI | 52.10 | 40.51 | 53.79 | 49.93 | 55.04 | 59.08 | 62.14 | ||
| ARI | 58.97 | 40.46 | 58.59 | 55.86 | 60.51 | 62.87 | 65.50 |
| 时间片 | 评价指标 | DTCM | DETCM | |||
|---|---|---|---|---|---|---|
| 无类簇对比 | 有类簇对比 | 线性融合 | 无类簇对比 | 有类簇对比 | ||
| T1 | ACC | 98.92 | 98.92 | 96.28 | 98.92 | 98.92 |
| NMI | 96.41 | 96.41 | 90.99 | 96.41 | 96.41 | |
| ARI | 97.31 | 97.31 | 90.83 | 97.31 | 97.31 | |
| T2 | ACC | 90.47 | 91.21 | 89.75 | 94.80 | 95.38 |
| NMI | 74.42 | 78.93 | 76.29 | 84.57 | 85.63 | |
| ARI | 77.83 | 80.66 | 79.41 | 87.96 | 89.01 | |
| T3 | ACC | 77.51 | 78.17 | 81.11 | 85.43 | 87.89 |
| NMI | 51.21 | 54.33 | 64.55 | 66.59 | 69.28 | |
| ARI | 54.93 | 55.40 | 64.06 | 69.05 | 70.79 | |
| T4 | ACC | 60.99 | 65.95 | 67.37 | 70.17 | 78.72 |
| NMI | 44.94 | 48.03 | 53.89 | 54.00 | 67.32 | |
| ARI | 40.01 | 41.65 | 48.56 | 52.94 | 62.15 | |
表3 BBC_evo数据集上的DETCM消融实验结果 ( %)
Tab. 3 Results of DETCM ablation experiments on BBC_evo dataset
| 时间片 | 评价指标 | DTCM | DETCM | |||
|---|---|---|---|---|---|---|
| 无类簇对比 | 有类簇对比 | 线性融合 | 无类簇对比 | 有类簇对比 | ||
| T1 | ACC | 98.92 | 98.92 | 96.28 | 98.92 | 98.92 |
| NMI | 96.41 | 96.41 | 90.99 | 96.41 | 96.41 | |
| ARI | 97.31 | 97.31 | 90.83 | 97.31 | 97.31 | |
| T2 | ACC | 90.47 | 91.21 | 89.75 | 94.80 | 95.38 |
| NMI | 74.42 | 78.93 | 76.29 | 84.57 | 85.63 | |
| ARI | 77.83 | 80.66 | 79.41 | 87.96 | 89.01 | |
| T3 | ACC | 77.51 | 78.17 | 81.11 | 85.43 | 87.89 |
| NMI | 51.21 | 54.33 | 64.55 | 66.59 | 69.28 | |
| ARI | 54.93 | 55.40 | 64.06 | 69.05 | 70.79 | |
| T4 | ACC | 60.99 | 65.95 | 67.37 | 70.17 | 78.72 |
| NMI | 44.94 | 48.03 | 53.89 | 54.00 | 67.32 | |
| ARI | 40.01 | 41.65 | 48.56 | 52.94 | 62.15 | |
| 论文领域 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|
| 物理 | equation solution theory brane gauge field quark decay cloaking microstructure | superconducting decay field mass theory gauge cloaking wettability pluripolar photon | energy quantum field theory equation decay mass quark gauge spectrum | higgs quantum spectrum decay mass particle quark photon wave energy |
| 计算机科学 | algorithm reranker network code channel lut propose selection scheme channel | encoding channel network precoding datum method propose learning model wiretapper | algorithm image network method propose control datum task efficient model | model datum code learning language network performance algorithm propose multimodal |
| 数学 | algebra euler graphon homotopically nll find discovery gevrey contractile prove | equation algebra prove subgroup approximation approach solution isometry continuous vertex | algebra group graphon triangulate homotopically prove compact subgroup inequality space | equation solution problem choquet algorithm nonlinear prove algebra system inequality |
表4 arXiv数据集上DETCM捕捉的演化主题词
Tab. 4 Evolving topic words captured by DETCM on arXiv dataset.
| 论文领域 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|
| 物理 | equation solution theory brane gauge field quark decay cloaking microstructure | superconducting decay field mass theory gauge cloaking wettability pluripolar photon | energy quantum field theory equation decay mass quark gauge spectrum | higgs quantum spectrum decay mass particle quark photon wave energy |
| 计算机科学 | algorithm reranker network code channel lut propose selection scheme channel | encoding channel network precoding datum method propose learning model wiretapper | algorithm image network method propose control datum task efficient model | model datum code learning language network performance algorithm propose multimodal |
| 数学 | algebra euler graphon homotopically nll find discovery gevrey contractile prove | equation algebra prove subgroup approximation approach solution isometry continuous vertex | algebra group graphon triangulate homotopically prove compact subgroup inequality space | equation solution problem choquet algorithm nonlinear prove algebra system inequality |
| 方法 | 耗时/s |
|---|---|
| K-means | 6.31 |
| DTM[ | 452.34 |
| ToT[ | 23.70 |
| DEC[ | 29.31 |
| IDEC[ | 30.19 |
| DEDC-IMAE[ | 266.30 |
| DTCM(无类簇对比) | 306.83 |
| DTCM | 176.82 |
| DETCM(无类簇对比) | 393.89 |
| DETCM(线性融合) | 415.03 |
| DETCM | 500.66 |
表5 时间消耗统计
Tab. 5 Statistics of time consumption
| 方法 | 耗时/s |
|---|---|
| K-means | 6.31 |
| DTM[ | 452.34 |
| ToT[ | 23.70 |
| DEC[ | 29.31 |
| IDEC[ | 30.19 |
| DEDC-IMAE[ | 266.30 |
| DTCM(无类簇对比) | 306.83 |
| DTCM | 176.82 |
| DETCM(无类簇对比) | 393.89 |
| DETCM(线性融合) | 415.03 |
| DETCM | 500.66 |
| [1] | BAI R, HUANG R, CHEN Y, et al. Deep multi-view document clustering with enhanced semantic embedding [J]. Information Sciences, 2021, 564: 273-287. |
| [2] | REN L, QIN Y, CHEN Y, et al. Deep structural enhanced network for document clustering [J]. Applied Intelligence, 2023, 53(10): 12163-12178. |
| [3] | BO D, WANG X, SHI C, et al. Structural deep clustering network [C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 1400-1410. |
| [4] | PENG Z, LIU H, JIA Y, et al. Attention-driven graph clustering network [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 935-943. |
| [5] | XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. |
| [6] | KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. [2025-03-17]. . |
| [7] | XU Q, GU H, JI S. Text clustering based on pre-trained models and autoencoders [J]. Frontiers in Computational Neuroscience, 2024, 17: No.1334436. |
| [8] | PETUKHOVA A, MATOS-CARVALHO J P, FACHADA N. Text clustering with large language model embeddings [J]. International Journal of Cognitive Computing in Engineering, 2025, 6: 100-108. |
| [9] | LU H, CHENG Z, HUANG R, et al. DEDC-IMAE: a deep evolutionary document clustering model with inherited mixed autoencoder [J]. Information Sciences, 2024, 678: No.120880. |
| [10] | GERARD P, VOLKOVA S, PENAFIEL L, et al. Modeling information narrative detection and evolution on Telegram during the Russia-Ukraine war [C]// Proceedings of the 19th International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2025: 602-614. |
| [11] | LIU K, HE J, CHEN Y. A topic-enhanced Dirichlet model for short text stream clustering [J]. Neural Computing and Applications, 2024, 36(14): 8125-8140. |
| [12] | XU W, LI Y, QIANG J. Dynamic clustering for short text stream based on Dirichlet process [J]. Applied Intelligence, 2022, 52(4): 4651-4662. |
| [13] | GU B, KARGAR S, NAWAB F. Efficient dynamic clustering: capturing patterns from historical cluster evolution [C]// Proceedings of the 25th International Conference on Extending Database Technology. [S.l.]: OpenProceedings.org, 2022: 351-363. |
| [14] | YOU J, HU C, KAMIGAITO H, et al. Robust dynamic clustering for temporal networks [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 2424-2433. |
| [15] | CHAKRABARTI D, KUMAR R, TOMKINS A. Evolutionary clustering [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 554-560. |
| [16] | CHI Y, SONG X, ZHOU D, et al. Evolutionary spectral clustering by incorporating temporal smoothness [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 153-162. |
| [17] | XU K S, KLIGER M, HERO A O, III. Adaptive evolutionary clustering [J]. Data Mining and Knowledge Discovery, 2014, 28(2): 304-336. |
| [18] | BLEI D M, LAFFERTY J D. Dynamic topic models [C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 113-120. |
| [19] | JELODAR H, WANG Y, YUAN C, et al. Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a survey [J]. Multimedia Tools and Applications, 2019, 78(11): 15169-15211. |
| [20] | WANG X, McCALLUM A. Topics over time: a non-Markov continuous-time model of topical trends [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 424-433. |
| [21] | 宋凯,陈悦.技术主题动态演化分析的一种新方法: DPL-BMM模型[J].情报学报, 2024, 43(1): 25-33. |
| SONG K, CHEN Y. New approach for the dynamic evolution analysis of technology topics: DPL-BMM [J]. Journal of the China Society for Scientific and Technical Information, 2024, 43(1): 25-33. | |
| [22] | DIENG A B, RUIZ F J R, BLEI D M. Topic modeling in embedding spaces [J]. Transactions of the Association for Computational Linguistics, 2020, 8: 439-453. |
| [23] | DIENG A B, RUIZ F J R, BLEI D M. The dynamic embedded topic model [EB/OL]. [2025-03-17]. . |
| [24] | GUO X, GAO L, LIU X, et al. Improved deep embedded clustering with local structure preservation [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 1753-1759. |
| [25] | LIU M, LIU Y, LIANG K, et al. Deep temporal graph clustering [EB/OL]. [2025-03-17]. . |
| [26] | YAN Y, LU N, YAN R. Deep online probability aggregation clustering [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15111. Cham: Springer, 2025: 37-54. |
| [27] | CHAZAN S E, GANNOT S, GOLDBERGER J. Deep clustering based on a mixture of autoencoders [C]// Proceedings of the IEEE 29th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2019: 1-6. |
| [28] | MADIRAJU N S, SADAT S M, FISHER D. Deep temporal clustering: fully unsupervised learning of time-domain features [EB/OL]. [2025-03-17]. . |
| [29] | PANTULA P D, MIRIYALA S S, MITRA K. A deep unsupervised learning algorithm for dynamic data clustering [C]// Proceedings of the 7th Indian Control Conference. Piscataway: IEEE, 2021: 147-152. |
| [1] | 李玟, 李开荣, 杨凯. 基于数据增强的子图感知对比学习[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 1-9. |
| [2] | 杨兴耀, 齐正, 于炯, 张祖莲, 马帅, 沈洪涛. 时间感知和空间增强的双通道图神经网络会话推荐模型[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 104-112. |
| [3] | 许志雄, 李波, 边小勇, 胡其仁. 对抗样本嵌入注意力U型网络的3D医学图像分割[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3011-3016. |
| [4] | 刘超, 余岩化. 融合降噪策略与多视图对比学习的知识感知推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2827-2837. |
| [5] | 曲鹏欢, 魏巍, 闫京, 王锋. 基于双补全的不完整多视图度量学习[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2755-2763. |
| [6] | 王义, 马应龙. 基于项图动态适应性生成的多任务社交项推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2592-2599. |
| [7] | 王祉苑, 彭涛, 杨捷. 分布外检测中训练与测试的内外数据整合[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2497-2506. |
| [8] | 谢劲, 褚苏荣, 强彦, 赵涓涓, 张华, 高勇. 用于胸片中硬负样本识别的双支分布一致性对比学习模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2369-2377. |
| [9] | 王震洲, 郭方方, 宿景芳, 苏鹤, 王建超. 面向智能巡检的视觉模型鲁棒性优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2361-2368. |
| [10] | 王海杰, 张广鑫, 史海, 陈树. 基于实体表示增强的文档级关系抽取[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1809-1816. |
| [11] | 余明峰, 秦永彬, 黄瑞章, 陈艳平, 林川. 基于对比学习增强双注意力机制的多标签文本分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1732-1740. |
| [12] | 颜文婧, 王瑞东, 左敏, 张青川. 基于风味嵌入异构图层次学习的食谱推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1869-1878. |
| [13] | 姜超英, 李倩, 刘宁, 刘磊, 崔立真. 基于图对比学习的再入院预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1784-1792. |
| [14] | 龙雨菲, 牟宇辰, 刘晔. 基于张量化图卷积网络和对比学习的多源数据表示学习模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1372-1378. |
| [15] | 胡文彬, 蔡天翔, 韩天乐, 仲兆满, 马常霞. 融合对比学习与情感分析的多模态反讽检测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1432-1438. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||