《计算机应用》唯一官方网站

• •    下一篇

基于多尺度注意力自适应融合的稀疏CT伪影抑制Transformer网络

白杰龙1,方晨韵2,乔志伟2   

  1. 1. 山西大学计算机与信息技术学院
    2. 山西大学
  • 收稿日期:2025-07-22 修回日期:2025-09-25 发布日期:2025-11-05 出版日期:2025-11-05
  • 通讯作者: 乔志伟

Sparse CT artifact suppresion Transformer network based on multi-scale attention adaptive fusion

  • Received:2025-07-22 Revised:2025-09-25 Online:2025-11-05 Published:2025-11-05

摘要: 稀疏CT重建能够降低患者辐射剂量,对临床诊断具有重要意义。在基于深度学习的图像重建任务中,经典Uformer、Restormer、AST等网络未考虑图像多尺度与方向信息,忽略了局部细节和全局结构的平衡,伪影抑制效果有限。针对上述问题,提出一种多尺度注意力自适应融合Transformer网络(MAAF-Transformer)。该网络采用并行注意力融合策略,结合多尺度通道方向感知模块捕获伪影特征,并利用自适应空间通道注意力模块动态调节权重,最后通过门控深度卷积前馈网络筛选有效信息。实验结果表明,在60个稀疏视角下,提出的MAAF-Transformer比经典Uformer在峰值信噪比(PSNR)提高0.7141dB、结构相似性(SSIM)提高0.33%、均方根误差(RMSE)降低7.76%,并在视觉效果上同样表现优异。可见,MAAF-Transformer稀疏重建精度更高,抑制伪影能力更强。

Abstract: Sparse CT reconstruction can reduce patient radiation dose and is of great significance for clinical diagnosis. In deep learning-based image reconstruction tasks, classic networks such as Uformer, Restormer, and AST fail to consider multi-scale and directional information in images, neglecting the balance between local details and global structure, resulting in limited artifact suppression. To address these issues, a Multi-scale Attention Adaptive Fusion Transformer (MAAF-Transformer) network was proposed. A parallel attention fusion strategy was adopted by this network, which was combined with a multi-scale channel-directional awareness module to capture artifact features. The weights were dynamically adjusted by utilizing an adaptive spatial channel attention module. Finally, effective information was filtered through a gated deep convolutional feedforward network. Experimental results show that, under 60 sparse views, MAAF-Transformer achieves 0.7141 dB higher peak signal-to-noise ratio (PSNR), 0.33%higher structural similarity (SSIM), and 7.76% lower root mean square error (RMSE) than classic Uformer, demonstrating excellent performance in terms of visual effects as well. Evidently, MAAF-Transformer possesses higher sparse reconstruction accuracy and stronger artifact suppression capabilities.

中图分类号: