| [1] |
CLARK M J, RAJABION L. A strategic approach to IoT security by working towards a secure IoT future [J]. International Journal of Hyperconnectivity and the Internet of Things, 2023, 7(1): 1-18.
|
| [2] |
张毅.基于约束的RESTful API模糊测试框架研究[D].成都:电子科技大学, 2024.
|
|
ZHANG Y. Constraint-based RESTful API fuzz testing framework research [D]. Chengdu: University of Electronic Science and Technology of China, 2024.
|
| [3] |
FU Y, LIANG P, TAHIR A, et al. Security weaknesses of Copilot-generated code in GitHub projects: an empirical study [J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(8): No.218.
|
| [4] |
BASAK S K, PARDESHI T, REAVES B, et al. RiskHarvester: a risk-based tool to prioritize secret removal efforts in software artifacts [EB/OL]. [2025-03-20]. .
|
| [5] |
刘涛. RESTful与GraphQL API模糊测试技术研究[D].杭州:杭州电子科技大学, 2024.
|
|
LIU T. Research on RESTful and GraphQL API fuzz testing technology [D]. Hangzhou: Hangzhou Dianzi University, 2024.
|
| [6] |
FOLEY M, MAFFEIS S. APIRL: deep reinforcement learning for REST API fuzzing [C]// Proceedings of the 39th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2025: 191-199.
|
| [7] |
KIM M, SINHA S, ORSO A. LlamaRestTest: effective REST API testing with small language models [J]. Proceedings of the ACM on Software Engineering, 2025, 2(FSE): 465-488.
|
| [8] |
DENG G, ZHANG Z, LI Y, et al. NAUTILUS: automated RESTful API vulnerability detection [C]// Proceedings of the 32nd USENIX Conference on Security Symposium. Berkeley: USENIX Association, 2023: 5594-5609.
|
| [9] |
DU W, LI J, WANG Y, et al. Vulnerability-oriented testing for RESTful APIs [C]// Proceedings of the 33rd USENIX Security Symposium. Berkeley: USENIX Association, 2024: 739-755.
|
| [10] |
NOOYENS R, BARDAKCI T, BEYAZIT M, et al. Test amplification for REST APIs via single and multi-agent LLM systems [EB/OL]. [2025-06-05]. .
|
| [11] |
WEYSSOW M, YANG C, CHEN J, et al. R2 Vul: learning to reason about software vulnerabilities with reinforcement learning and structured reasoning distillation [EB/OL]. [2025-04-28]. .
|
| [12] |
ROBRE, NOBLE N, BASULI S. ScriptHunter: tool to find JavaScript files on websites [EB/OL]. [2025-03-10]. .
|
| [13] |
COSGROVE J, ZEJNILOVIC S. Introducing Cloudflare's 2024 API security and management report [EB/OL]. [2025-03-05]. .
|
| [14] |
ATLIDAKIS V, GODEFROID P, POLISHCHUK M. RESTler: stateful REST API fuzzing [C]// Proceedings of the IEEE/ACM 41st International Conference on Software Engineering. Piscataway: IEEE, 2019: 748-758.
|
| [15] |
CHAROENWET W, THONGTANUNAM P, PHAM V T, et al. An empirical study of static analysis tools for secure code review [C]// Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2016: 691-703.
|
| [16] |
ZHANG M, ARCURI A. Open problems in fuzzing RESTful APIs: a comparison of tools [J]. ACM Transactions on Software Engineering and Methodology, 2023, 32(6): No.144.
|
| [17] |
ARCURI A. RESTful API automated test case generation with EvoMaster [J]. ACM Transactions on Software Engineering and Methodology, 2019, 28(1): No.3.
|
| [18] |
DHARMAADI I P A, ATHANASOPOULOS E, TURKMEN F. Fuzzing frameworks for server-side web applications: a survey [J]. International Journal of Information Security, 2025, 24: No.73.
|
| [19] |
YANG R, LAU W C, CHEN J, et al. Vetting single sign-on SDK implementations via symbolic reasoning [C]// Proceedings of the 27th USENIX Security Symposium. Berkeley: USENIX Association, 2018: 1459-1474.
|
| [20] |
REN X, YE X, XING Z, et al. API-misuse detection driven by fine-grained API-constraint knowledge graph [C]// Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2020: 461-472.
|
| [21] |
PEARCE H, TAN B, AHMAD B, et al. Examining zero-shot vulnerability repair with large language models [C]// Proceedings of the 2023 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2023: 2339-2356.
|
| [22] |
MA X, LUO L, ZENG Q. From one thousand pages of specification to unveiling hidden bugs: large language model assisted fuzzing of Matter IoT devices [C]// Proceedings of the 33rd USENIX Security Symposium. Berkeley: USENIX Association, 2024: 4783-4800.
|
| [23] |
LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 9459-9474.
|
| [24] |
RAHMAN M, PIRYANI K O, SANCHEZ A M, et al. Retrieval augmented generation for robust cyber defense: PNNL-36792 [R/OL]. [2025-03-05]. .
|
| [25] |
HUANG L, YU W, MA W, et al. A survey on hallucination in large language models: principles, taxonomy, challenges, and open questions [J]. ACM Transactions on Information Systems, 2025, 43(3): No.42.
|
| [26] |
SIDDIQ M L, SILVA SANTOS J C DA, TANVIR R H, et al. Using large language models to generate JUnit tests: an empirical study [C]// Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering. New York: ACM, 2024: 313-322.
|
| [27] |
SOLTANI M, KHAJAVI K, SIAVOSHANI M J, et al. A multi-agent adaptive deep learning framework for online intrusion detection [J]. Cybersecurity, 2024, 7: No.9.
|
| [28] |
REN S, JIN J, NIU G, et al. ARCS: adaptive reinforcement learning framework for automated cybersecurity incident response strategy optimization [J]. Applied Sciences, 2025, 15(2): No.951.
|