《计算机应用》唯一官方网站

• •    下一篇

基于时空特征增强网络的抗屏摄攻击鲁棒视频水印

周益民1,罗杰1,符雯惠1,王娟2,3   

  1. 1. 成都信息工程大学
    2. 成都信息工程学院
    3. 电子科技大学 计算机科学与工程学院
  • 收稿日期:2025-09-01 修回日期:2025-10-30 发布日期:2025-12-10 出版日期:2025-12-10
  • 通讯作者: 罗杰
  • 基金资助:
    国家自然科学基金;四川省自然科学基金

Robust screen-shooting resilient video watermarking via spatiotemporal feature-enhanced network

  • Received:2025-09-01 Revised:2025-10-30 Online:2025-12-10 Published:2025-12-10

摘要: 摘 要: 近年来,随着多源拍摄设备及传感技术的发展,屏幕翻拍已成为视频信息传播泄露的主要途径。屏摄信道对视频水印信息造成了不可逆的物理损害,使其难以追踪溯源信息泄露途径,是当前视频取证领域面临的重要挑战。现有抗屏摄视频水印技术尚处于初步研究阶段,主要依赖于手工提取频域特征,难以有效抵御跨设备屏摄攻击。为此,提出一种基于时空特征增强网络的端到端抗屏摄攻击视频水印方法,可实现跨设备抵御屏摄攻击。首先,为丰富水印嵌入特征,本文结合光流估计网络和高通滤波器设计时空特征增强网络模块,优化水印信息嵌入策略。然后,通过引入屏摄信道噪声关键因素模拟屏摄失真,设计抗屏摄攻击噪声层,增强抗屏摄攻击的跨设备鲁棒性。最后,在真实屏摄攻击场景中验证,所提方法解码准确率超过95%,鲁棒性与图像质量均优于现有方案。

关键词: 关键词: 视频取证, 水印, 屏摄攻击, 深度学习, 鲁棒性

Abstract: Abstract: Recently, with the advancement of multi-source shooting devices and sensing technologies, screen recording has become a primary channel for video information leakage during dissemination. The screen-capture process causes irreversible physical damage to video watermark information, making it difficult to trace the source of information leaks, which poses a significant challenge in the field of video forensics. Existing anti-screen-capture video watermarking techniques are still in their preliminary stages, primarily relying on handcrafted frequency-domain features, which struggle to effectively resist cross-device screen-capture attacks. To address this issue, this paper proposes an end-to-end anti-screen-capture video watermarking method based on a spatiotemporal feature enhancement network, capable of resisting screen-capture attacks across devices. First, to enrich watermark embedding features, a spatiotemporal feature enhancement network module is designed by integrating an optical flow estimation network and a high-pass filter, optimizing the watermark embedding strategy. Then, by simulating key factors of screen-capture channel noise to replicate screen-capture distortions, an anti-screen-capture attack noise layer is designed to enhance cross-device robustness against such attacks. Finally, validation in real screen-capture attack scenarios demonstrates that the proposed method achieves a decoding accuracy of over 95%, with both robustness and image quality outperforming existing solutions.

Key words: Keywords: video forensics, watermarking, screen-capture attack, deep learning, robustness

中图分类号: