《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (12): 3900-3905.DOI: 10.11772/j.issn.1001-9081.2021101743
You YANG1,2, Lizhi CHEN2(), Xiaolong FANG2, Longyue PAN2
摘要:
针对传统的图像描述模型不能充分利用图像信息且融合特征方式单一的问题,提出了一种融合自适应常识门(ACG)的图像描述生成模型。首先,使用基于视觉常识区域的卷积神经网络(VC R-CNN)提取视觉常识特征,并将常识特征分层输入到Transformer编码器中;然后,在编码器的每一分层中设计了ACG,从而对视觉常识特征和编码特征进行自适应融合操作;最后,将融合常识信息的编码特征送入Transformer解码器中完成训练。使用MSCOCO数据集进行训练和测试,结果表明所提模型在评价指标BLEU?4、CIDEr和SPICE上分别达到了39.2、129.6和22.7,相较于词性堆叠交叉注意网络(POS-SCAN)模型分别提升了3.2%、2.9%和2.3%。所提模型的效果明显优于使用单一显著区域特征的Transformer模型,能够对图像内容进行准确的描述。
中图分类号: