《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (7): 2139-2145.DOI: 10.11772/j.issn.1001-9081.2021050839
收稿日期:
2021-05-21
修回日期:
2021-09-29
接受日期:
2021-09-30
发布日期:
2021-09-29
出版日期:
2022-07-10
通讯作者:
聂凡
作者简介:
沙林秀(1978—),女,陕西安康人,副教授,博士,主要研究方向:智能钻井控制基金资助:
Linxiu SHA, Fan NIE(), Qian GAO, Hao MENG
Received:
2021-05-21
Revised:
2021-09-29
Accepted:
2021-09-30
Online:
2021-09-29
Published:
2022-07-10
Contact:
Fan NIE
About author:
SHA Linxiu, born in 1978, Ph. D., associate professor. Her research interests include intelligent drilling control.Supported by:
摘要:
针对群智能优化算法在优化过程中容易陷入局部最优、种群多样性低以及高维函数优化困难的问题,提出一种基于布朗运动与梯度信息的交替优化算法(AOABG)。首先,采用全局、局部搜索交替的寻优策略,即在有变优趋势的范围内切换为局部搜索,有变劣趋势的范围内切换为全局搜索;然后,局部搜索引入基于梯度信息的均匀分布概率的随机游走,全局搜索引入基于最优解位置的布朗运动的随机游走。将所提出的AOABG与近三年的哈里斯鹰优化算法(HHO)、麻雀搜索算法(SSA)、特种部队算法(SFA)在10个测试函数上对比。当测试函数维数为2、10时,AOABG在10个测试函数上的100次最终优化结果的均值与均方差均优于HHO、SSA与SFA。当测试函数为30维时,除了HHO在Levy函数上的表现优于AOABG(两者优化结果均值处于同一数量级)外,AOABG在其他9个测试函数上表现最好,与上述算法相比,优化结果均值提升了4.64%~94.89%。实验结果表明,AOABG在高维函数优化中收敛速度更快、稳定性更好、精度更高。
中图分类号:
沙林秀, 聂凡, 高倩, 孟号. 基于布朗运动与梯度信息的交替优化算法[J]. 计算机应用, 2022, 42(7): 2139-2145.
Linxiu SHA, Fan NIE, Qian GAO, Hao MENG. Alternately optimizing algorithm based on Brownian movement and gradient information[J]. Journal of Computer Applications, 2022, 42(7): 2139-2145.
算法 | 参数 | 值 |
---|---|---|
HHO | 无 | 无 |
SSA | 警惕阈值 | |
生产者数量 | ||
预警数量 | ||
SFA | ||
AOABG | 局部搜索步长 | |
全局搜索步长 | ||
布朗运动方差系数 |
表1 算法参数设置
Tab.1 Parameter settings of algorithms
算法 | 参数 | 值 |
---|---|---|
HHO | 无 | 无 |
SSA | 警惕阈值 | |
生产者数量 | ||
预警数量 | ||
SFA | ||
AOABG | 局部搜索步长 | |
全局搜索步长 | ||
布朗运动方差系数 |
函数 | 函数名称 | 原搜索空间 | 最优值 |
---|---|---|---|
F1(X) | Ackley | ||
F2(X) | Alpine | ||
F3(X) | Rastrigin | ||
F4(X) | Levy | ||
F5(X) | Girewank | ||
F6(X) | Salomon | ||
F7(X) | Sphere | ||
F8(X) | Rosenbrock | ||
F9(X) | Schwefel P2.22 | ||
F10(X) | Sum of different power |
表2 测试函数
Tab.2 Test functions
函数 | 函数名称 | 原搜索空间 | 最优值 |
---|---|---|---|
F1(X) | Ackley | ||
F2(X) | Alpine | ||
F3(X) | Rastrigin | ||
F4(X) | Levy | ||
F5(X) | Girewank | ||
F6(X) | Salomon | ||
F7(X) | Sphere | ||
F8(X) | Rosenbrock | ||
F9(X) | Schwefel P2.22 | ||
F10(X) | Sum of different power |
测试 函数 | HHO | SFA | SSA | AOABG | ||||
---|---|---|---|---|---|---|---|---|
均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | |
F1 | 1.10E-01 | 2.08E-02 | 2.16E+00 | 2.96E+00 | 5.46E+00 | 1.14E+00 | 1.91E-02 | 1.26E-04 |
F2 | 1.73E-03 | 4.56E-05 | 3.04E-02 | 5.41E-03 | 3.38E-01 | 1.57E-02 | 2.34E-04 | 1.27E-08 |
F3 | 5.30E-01 | 3.20E-01 | 1.51E+00 | 3.96E-01 | 4.29E+00 | 1.72E+00 | 1.60E-04 | 4.31E-08 |
F4 | 2.49E-04 | 1.13E-07 | 2.18E-02 | 1.53E-03 | 8.93E-01 | 5.27E-02 | 3.38E-06 | 2.02E-11 |
F5 | 7.04E-01 | 8.43E-02 | 2.42E-01 | 3.04E-02 | 9.25E-01 | 6.57E-02 | 1.74E-02 | 1.72E-04 |
F6 | 1.64E-01 | 2.24E-02 | 3.64E-01 | 5.02E-02 | 2.43E-01 | 6.07E-03 | 1.77E-02 | 3.04E-04 |
F7 | 7.00E-03 | 1.40E-04 | 4.51E+00 | 1.45E+02 | 1.72E+02 | 1.02E+04 | 2.91E-04 | 8.14E-08 |
F8 | 5.54E-01 | 3.31E+00 | 4.16E+00 | 4.55E+01 | 4.08E+00 | 5.24E+00 | 6.97E-03 | 1.08E-04 |
F9 | 2.15E-02 | 4.64E-04 | 4.25E-01 | 1.45E-01 | 4.16E+00 | 1.98E-01 | 2.92E-03 | 1.81E-06 |
F10 | 2.06E-05 | 2.05E-09 | 1.19E-04 | 4.80E-08 | 5.90E-04 | 1.04E-07 | 1.04E-08 | 1.80E-16 |
表3 各算法优化结果(s=2,n=10)
Tab.3 Optimization results of different algorithms (s=2,n=10)
测试 函数 | HHO | SFA | SSA | AOABG | ||||
---|---|---|---|---|---|---|---|---|
均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | |
F1 | 1.10E-01 | 2.08E-02 | 2.16E+00 | 2.96E+00 | 5.46E+00 | 1.14E+00 | 1.91E-02 | 1.26E-04 |
F2 | 1.73E-03 | 4.56E-05 | 3.04E-02 | 5.41E-03 | 3.38E-01 | 1.57E-02 | 2.34E-04 | 1.27E-08 |
F3 | 5.30E-01 | 3.20E-01 | 1.51E+00 | 3.96E-01 | 4.29E+00 | 1.72E+00 | 1.60E-04 | 4.31E-08 |
F4 | 2.49E-04 | 1.13E-07 | 2.18E-02 | 1.53E-03 | 8.93E-01 | 5.27E-02 | 3.38E-06 | 2.02E-11 |
F5 | 7.04E-01 | 8.43E-02 | 2.42E-01 | 3.04E-02 | 9.25E-01 | 6.57E-02 | 1.74E-02 | 1.72E-04 |
F6 | 1.64E-01 | 2.24E-02 | 3.64E-01 | 5.02E-02 | 2.43E-01 | 6.07E-03 | 1.77E-02 | 3.04E-04 |
F7 | 7.00E-03 | 1.40E-04 | 4.51E+00 | 1.45E+02 | 1.72E+02 | 1.02E+04 | 2.91E-04 | 8.14E-08 |
F8 | 5.54E-01 | 3.31E+00 | 4.16E+00 | 4.55E+01 | 4.08E+00 | 5.24E+00 | 6.97E-03 | 1.08E-04 |
F9 | 2.15E-02 | 4.64E-04 | 4.25E-01 | 1.45E-01 | 4.16E+00 | 1.98E-01 | 2.92E-03 | 1.81E-06 |
F10 | 2.06E-05 | 2.05E-09 | 1.19E-04 | 4.80E-08 | 5.90E-04 | 1.04E-07 | 1.04E-08 | 1.80E-16 |
测试 函数 | HHO | SFA | SSA | AOABG | ||||
---|---|---|---|---|---|---|---|---|
均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | |
F1 | 1.93E+01 | 2.49E+00 | 1.94E+01 | 3.29E-02 | 2.03E+01 | 4.91E-02 | 8.83E+00 | 2.17E-03 |
F2 | 1.43E+01 | 1.12E+01 | 2.85E+01 | 7.27E+00 | 3.71E+01 | 2.20E+01 | 9.45E-01 | 2.64E-01 |
F3 | 1.76E+02 | 2.96E+02 | 2.39E+02 | 5.37E+02 | 2.59E+02 | 5.64E+02 | 1.77E+01 | 1.40E+01 |
F4 | 2.23E+01 | 8.90E+01 | 8.59E+01 | 4.05E+02 | 1.02E+02 | 3.94E+02 | 1.07E+01 | 7.98E+00 |
F5 | 1.67E+02 | 8.65E+02 | 3.55E+02 | 2.57E+03 | 3.76E+02 | 2.62E+03 | 1.32E+01 | 3.03E-04 |
F6 | 9.53E+00 | 1.77E+00 | 1.81E+01 | 1.21E+00 | 2.03E+01 | 5.04E-01 | 3.87E+00 | 3.29E-03 |
F7 | 2.29E+03 | 2.87E+05 | 2.50E+04 | 1.45E+07 | 3.39E+04 | 1.50E+07 | 1.40E+03 | 3.25E-02 |
F8 | 7.76E+05 | 1.07E+09 | 1.14E+08 | 1.42E+15 | 9.66E+07 | 7.98E+14 | 6.87E+05 | 1.58E+06 |
F9 | 1.22E+01 | 2.11E+00 | 8.68E+01 | 8.74E+01 | 8.99E+01 | 2.98E-01 | 6.10E+00 | 3.65E-04 |
F10 | 7.43E-02 | 4.09E-03 | 3.19E-01 | 7.60E-03 | 5.46E-01 | 3.10E-02 | 6.18E-07 | 3.58E-13 |
表4 各算法优化结果(s=10,n=20)
Tab.4 Optimization results of different algorithms (s=10,n=20)
测试 函数 | HHO | SFA | SSA | AOABG | ||||
---|---|---|---|---|---|---|---|---|
均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | |
F1 | 1.93E+01 | 2.49E+00 | 1.94E+01 | 3.29E-02 | 2.03E+01 | 4.91E-02 | 8.83E+00 | 2.17E-03 |
F2 | 1.43E+01 | 1.12E+01 | 2.85E+01 | 7.27E+00 | 3.71E+01 | 2.20E+01 | 9.45E-01 | 2.64E-01 |
F3 | 1.76E+02 | 2.96E+02 | 2.39E+02 | 5.37E+02 | 2.59E+02 | 5.64E+02 | 1.77E+01 | 1.40E+01 |
F4 | 2.23E+01 | 8.90E+01 | 8.59E+01 | 4.05E+02 | 1.02E+02 | 3.94E+02 | 1.07E+01 | 7.98E+00 |
F5 | 1.67E+02 | 8.65E+02 | 3.55E+02 | 2.57E+03 | 3.76E+02 | 2.62E+03 | 1.32E+01 | 3.03E-04 |
F6 | 9.53E+00 | 1.77E+00 | 1.81E+01 | 1.21E+00 | 2.03E+01 | 5.04E-01 | 3.87E+00 | 3.29E-03 |
F7 | 2.29E+03 | 2.87E+05 | 2.50E+04 | 1.45E+07 | 3.39E+04 | 1.50E+07 | 1.40E+03 | 3.25E-02 |
F8 | 7.76E+05 | 1.07E+09 | 1.14E+08 | 1.42E+15 | 9.66E+07 | 7.98E+14 | 6.87E+05 | 1.58E+06 |
F9 | 1.22E+01 | 2.11E+00 | 8.68E+01 | 8.74E+01 | 8.99E+01 | 2.98E-01 | 6.10E+00 | 3.65E-04 |
F10 | 7.43E-02 | 4.09E-03 | 3.19E-01 | 7.60E-03 | 5.46E-01 | 3.10E-02 | 6.18E-07 | 3.58E-13 |
测试 函数 | HHO | SFA | SSA | AOABG | ||||
---|---|---|---|---|---|---|---|---|
均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | |
F1 | 1.93E+01 | 4.60E-02 | 1.99E+01 | 8.96E-02 | 2.01E+01 | 2.90E-02 | 9.72E+00 | 1.11E+01 |
F2 | 2.51E+01 | 1.80E+01 | 5.00E+01 | 4.11E+01 | 5.76E+01 | 3.10E+01 | 1.29E+00 | 1.77E-01 |
F3 | 2.44E+02 | 3.57E+02 | 3.39E+02 | 1.41E+03 | 3.57E+02 | 9.86E+02 | 3.09E+01 | 4.19E+01 |
F4 | 4.73E+01 | 9.46E+01 | 1.41E+02 | 5.97E+02 | 1.27E+02 | 4.48E+02 | 9.65E+01 | 5.69E+02 |
F5 | 1.10E+02 | 7.21E+02 | 4.68E+02 | 3.86E+03 | 4.34E+02 | 4.13E+03 | 1.80E+01 | 7.98E-03 |
F6 | 7.22E+00 | 4.02E-01 | 2.33E+01 | 1.12E+00 | 2.42E+01 | 2.51E-01 | 4.54E+00 | 2.32E-03 |
F7 | 2.12E+03 | 2.54E+03 | 4.57E+04 | 5.55E+07 | 5.44E+04 | 1.70E+07 | 1.90E+03 | 1.37E-02 |
F8 | 1.14E+06 | 7.61E+08 | 1.27E+08 | 8.33E+14 | 1.46E+08 | 4.51E+14 | 1.09E+06 | 3.38E+05 |
F9 | 1.94E+01 | 2.46E+00 | 1.05E+02 | 1.04E+02 | 9.93E+01 | 3.48E+01 | 9.11E+00 | 2.67E-04 |
F10 | 6.02E-02 | 4.03E-04 | 4.80E-01 | 4.83E-02 | 4.75E-01 | 2.56E-02 | 4.10E-02 | 1.14E-21 |
表5 各算法优化结果(s=30,n=30)
Tab.5 Optimization results of different algorithms (s=30,n=30)
测试 函数 | HHO | SFA | SSA | AOABG | ||||
---|---|---|---|---|---|---|---|---|
均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | 均值 | 均方差 | |
F1 | 1.93E+01 | 4.60E-02 | 1.99E+01 | 8.96E-02 | 2.01E+01 | 2.90E-02 | 9.72E+00 | 1.11E+01 |
F2 | 2.51E+01 | 1.80E+01 | 5.00E+01 | 4.11E+01 | 5.76E+01 | 3.10E+01 | 1.29E+00 | 1.77E-01 |
F3 | 2.44E+02 | 3.57E+02 | 3.39E+02 | 1.41E+03 | 3.57E+02 | 9.86E+02 | 3.09E+01 | 4.19E+01 |
F4 | 4.73E+01 | 9.46E+01 | 1.41E+02 | 5.97E+02 | 1.27E+02 | 4.48E+02 | 9.65E+01 | 5.69E+02 |
F5 | 1.10E+02 | 7.21E+02 | 4.68E+02 | 3.86E+03 | 4.34E+02 | 4.13E+03 | 1.80E+01 | 7.98E-03 |
F6 | 7.22E+00 | 4.02E-01 | 2.33E+01 | 1.12E+00 | 2.42E+01 | 2.51E-01 | 4.54E+00 | 2.32E-03 |
F7 | 2.12E+03 | 2.54E+03 | 4.57E+04 | 5.55E+07 | 5.44E+04 | 1.70E+07 | 1.90E+03 | 1.37E-02 |
F8 | 1.14E+06 | 7.61E+08 | 1.27E+08 | 8.33E+14 | 1.46E+08 | 4.51E+14 | 1.09E+06 | 3.38E+05 |
F9 | 1.94E+01 | 2.46E+00 | 1.05E+02 | 1.04E+02 | 9.93E+01 | 3.48E+01 | 9.11E+00 | 2.67E-04 |
F10 | 6.02E-02 | 4.03E-04 | 4.80E-01 | 4.83E-02 | 4.75E-01 | 2.56E-02 | 4.10E-02 | 1.14E-21 |
1 | 段海滨,叶飞. 鸽群优化算法研究进展[J]. 北京工业大学学报, 2017, 43(1):1-7. 10.11936/bjutxb2016090003 |
DUAN H B, YE F. Progresses in pigeon-inspired optimization algorithms[J]. Journal of Beijing University of Technology, 2017, 43(1):1-7. 10.11936/bjutxb2016090003 | |
2 | ZONG W G, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search[J]. Simulation, 2001, 2(2):60-68. 10.1177/003754970107600201 |
3 | YANG X S. Firefly algorithms for multimodal optimization[C]// Proceedings of the 5th International Conference on Stochastic Algorithms: Foundations and Applications. Cham: Springer, 2009:169-178. 10.1007/978-3-642-04944-6_14 |
4 | YANG X S, DEB S. Cuckoo search via Lévy flights[C]// Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing. Piscataway: IEEE, 2009:210-214. 10.1109/nabic.2009.5393690 |
5 | YANG X S. A new metaheuristic bat-inspired algorithm[J]. Computer Knowledge and Technology, 2010, 284:65-74. 10.1007/978-3-642-12538-6_6 |
6 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97:849-872. 10.1016/j.future.2019.02.028 |
7 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020,8(1):22-34. 10.1080/21642583.2019.1708830 |
8 | 潘科,张伟,王亚刚. 特种部队算法:一种新的元启发式算法[J/OL]. 控制与决策. (2021-08-02) [2021-08-21]. . |
PAN K, ZHANG W, WANG Y G. Special forces algorithm: a new meta-heuristic algorithm[J/OL]. Control and Decision. (2021-08-02) [2021-08-21].. | |
9 | 郭雨鑫,刘升,高文欣,等. 多策略改进哈里斯鹰优化算法[J]. 微电子学与计算机, 2021, 38(7):18-24. |
GUO Y X, LIU S, GAO W X, et al. Improved Harris hawks optimization algorithm with multiple strategies[J]. Microelectronics and Computer, 2021, 38(7):18-24. | |
10 | 毛清华,张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6):1155-1164. |
MAO Q H, ZHANG Q. Improved sparrow algorithm combining Cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6):1155-1164. | |
11 | 汤安迪,韩统,徐登武,等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用, 2021, 41(8):2265-2272. 10.11772/j.issn.1001-9081.2020101610 |
TANG A D, HAN T, XU D W, et al. Chaotic elite Harris hawks optimization algorithm[J]. Journal of Computer Applications, 2021, 41(8):2265-2272. 10.11772/j.issn.1001-9081.2020101610 | |
12 | 国强,朱国会,李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J/OL]. 吉林大学学报(工学版). (2021-09-02) [2021-09-11].. |
GUO Q, ZHU G H, LI W C. TDOA/FDOA localization based on chaotic sparrow search algorithm[J/OL]. Journal of Jilin University (Engineering and Technology Edition). (2021-09-02) [2021-09-11].. | |
13 | 夏学文,刘经南,高柯夫,等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015, 38(7):1397-1407. 10.11897/SP.J.1016.2015.01397 |
XIA X W, LIU J N, GAO K F, et al. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Chinese Journal of Computers, 2015, 38(7):1397-1407. 10.11897/SP.J.1016.2015.01397 | |
14 | 张永韡,汪镭,吴启迪. 动态适应布谷鸟搜索算法[J]. 控制与决策, 2014, 29(4):617-622. |
ZHANG Y W, WANG L, WU Q D. Dynamic adaptation cuckoo search algorithm[J]. Control and Decision, 2014, 29(4):617-622. | |
15 | SHA L X, PAN Z Q. FSQGA based 3D complexity wellbore trajectory optimization[J]. Oil and Gas Science and Technology, 2018, 73: No.79. 10.2516/ogst/2018008 |
[1] | 程美英, 钱乾, 熊伟清. 信息迁移多任务优化共生生物搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2237-2247. |
[2] | 邱仲睿, 苗虹, 曾成碧. 多策略融合的改进黏菌算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 812-819. |
[3] | 陆国庆, 孙昊. 基于随机行走的群机器人二维地图构建[J]. 计算机应用, 2021, 41(7): 2121-2127. |
[4] | 程美英, 钱乾, 倪志伟, 朱旭辉. 信息筛选多任务优化自组织迁移算法[J]. 计算机应用, 2021, 41(6): 1748-1755. |
[5] | 魏博, 杨茸, 舒思豪, 万勇, 苗建国. 基于离子运动-人工蜂群算法的移动机器人路径规划[J]. 计算机应用, 2021, 41(2): 379-383. |
[6] | 陈维兴, 刘清涛, 孙习习, 陈斌. 机坪感知网络的快速收敛平均一致性时间同步算法[J]. 计算机应用, 2020, 40(11): 3407-3412. |
[7] | 李人敏, 黄劲松, 陈琛, 吴君钦. 基于改进粒子群算法的毫米波大规模MIMO混合预编码方案[J]. 计算机应用, 2018, 38(8): 2365-2369. |
[8] | 欧阳宁, 曾梦萍, 林乐平. 基于并列卷积神经网络的超分辨率重建[J]. 计算机应用, 2017, 37(4): 1174-1178. |
[9] | 梁本来, 杨忠明, 秦勇, 蔡昭权. 引入梯度下降的蚁群算法求解多约束服务质量路由[J]. 计算机应用, 2017, 37(3): 722-729. |
[10] | 尤心心, 葛檬. 基于置信传播的复杂网络社团发现算法[J]. 计算机应用, 2017, 37(11): 3115-3118. |
[11] | 李萌, 秦品乐, 李传朋. 基于多新息理论的深度信念网络算法[J]. 计算机应用, 2016, 36(9): 2521-2525. |
[12] | 关志艳, 冯秀芳. 差分进化融合混合虚拟力的有向传感器网络覆盖算法[J]. 计算机应用, 2016, 36(12): 3244-3250. |
[13] | 张斌, 张达敏, 阿明翰. 基于模拟退火的果蝇优化算法[J]. 计算机应用, 2016, 36(11): 3118-3122. |
[14] | 王振朝 高扬 薛文玲 杨建坡. 基于并行滤波器的回波抵消技术方案[J]. 计算机应用, 2013, 33(07): 1839-1841. |
[15] | 张雪媛 王永刚 张琼. 基于分数布朗运动的自相似流量判别及生成方法[J]. 计算机应用, 2013, 33(04): 947-949. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||