| 1 | BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks [C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 635-644.  10.1145/1935826.1935914 | 
																													
																						| 2 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.  10.1145/2623330.2623732 | 
																													
																						| 3 | GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.  10.1145/2939672.2939754 | 
																													
																						| 4 | HUANG X, SONG Q Q, LI Y N, et al. Graph recurrent networks with attributed random walks [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 732-740.  10.1145/3292500.3330941 | 
																													
																						| 5 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795. | 
																													
																						| 6 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-04-10]. . | 
																													
																						| 7 | 杨晓慧,万睿,张海滨,等.基于符号语义映射的知识图谱表示学习算法[J].计算机研究与发展, 2018, 55(8): 1773-1784.  10.7544/issn1000-1239.2018.20180248 | 
																													
																						|  | YANG X H, WAN R, ZHANG H B, et al. Semantical symbol mapping embedding learning algorithm for knowledge graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784.  10.7544/issn1000-1239.2018.20180248 | 
																													
																						| 8 | NIKOLAKOPOULOS A N, KARYPIS G. RecWalk: nearly uncoupled random walks for Top-n recommendation [C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 150-158.  10.1145/3289600.3291016 | 
																													
																						| 9 | MEILĂ M, SHI J B. A random walks view of spectral segmentation [C]// Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics. New York: JMLR.org, 2001: 203-208. | 
																													
																						| 10 | COOPER C, LEE S H, RADZIK T, et al. Random walks in recommender systems: exact computation and simulations [C]// Proceedings of the 23rd International Conference on World Wide Web. New York: ACM, 2014: 811-816.  10.1145/2567948.2579244 | 
																													
																						| 11 | 冶忠林,赵海兴,张科,等.基于邻节点和关系模型优化的网络表示学习[J].计算机研究与发展, 2019, 56(12): 2562-2577.  10.7544/issn1000-1239.2019.20180566 | 
																													
																						|  | YE Z L, ZHAO H X, ZHANG K, et al. Network representation learning using the optimizations of neighboring vertices and relation model[J]. Journal of Computer Research and Development, 2019, 56(12): 2562-2577.  10.7544/issn1000-1239.2019.20180566 | 
																													
																						| 12 | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 1112-1119.  10.1609/aaai.v28i1.8870 | 
																													
																						| 13 | 方阳,赵翔,谭真,等.一种改进的基于翻译的知识图谱表示方法[J].计算机研究与发展, 2018, 55(1): 139-150.  10.7544/issn1000-1239.2018.20160723 | 
																													
																						|  | FANG Y, ZHAO X, TAN Z, et al. A revised translation-based method for knowledge graph representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150.  10.7544/issn1000-1239.2018.20160723 | 
																													
																						| 14 | YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29) [2021-04-10]. . | 
																													
																						| 15 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. | 
																													
																						| 16 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 1811-1818.  10.1609/aaai.v32i1.11573 | 
																													
																						| 17 | NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs [C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1955-1961.  10.1609/aaai.v30i1.10314 | 
																													
																						| 18 | YUN S, JEONG M, KIM R, et al. Graph transformer networks[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-04-10]. .  10.1016/j.neunet.2022.05.026 | 
																													
																						| 19 | RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. Struc2vec: Learning node representations from structural identity [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 385-394.  10.1145/3097983.3098061 | 
																													
																						| 20 | HOU Y F, CHEN H Z, LI C J, et al. A representation learning framework for property graphs [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 65-73.  10.1145/3292500.3330948 | 
																													
																						| 21 | AHMED N K, ROSSI R A, LEE J B, et al. Role-based graph embeddings[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2401-2415.  10.1109/tkde.2020.3006475 | 
																													
																						| 22 | HUANG X, LI J D, ZOU N, et al. A general embedding framework for heterogeneous information learning in large-scale networks[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(6): No.70.  10.1145/3241063 | 
																													
																						| 23 | MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual Review of Sociology, 2001, 27: 415-444.  10.1146/annurev.soc.27.1.415 | 
																													
																						| 24 | ZHANG J, TANG J, LI J Z, et al. Who influenced you? Predicting retweet via social influence locality[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3): No.25.  10.1145/2700398 |