| 1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. | 
																													
																						| 2 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-02-10]. . | 
																													
																						| 3 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.  10.1109/cvpr.2015.7298594 | 
																													
																						| 4 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 5 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. (2014-02-19) [2021-02-10]. . | 
																													
																						| 6 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-03-20) [2021-02-10]. . | 
																													
																						| 7 | 刘雨佳. 针对神经网络的图像对抗样本生成及应用研究[D].合肥:中国科学技术大学,2019:19-20. | 
																													
																						|  | LIU Y J. Generation and application of image adversarial examples for neural networks [D]. Hefei: University of Science and Technology of China, 2019: 19-20. | 
																													
																						| 8 | LIU Y P, CHEN X Y, LIU C, et al. Delving into transferable adversarial examples and black-box attacks[EB/OL]. (2017-02-07) [2021-02-11]. . | 
																													
																						| 9 | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[EB/OL]. (2017-02-11) [2021-02-11]. .  10.1201/9781351251389-8 | 
																													
																						| 10 | DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9185-9193.  10.1109/cvpr.2018.00957 | 
																													
																						| 11 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-02-11]. . | 
																													
																						| 12 | SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning [C]// Proceedings of the 30th International Conference Machine Learning. New York: JMLR.org, 2013: 1139-1147. | 
																													
																						| 13 | HINTON G, SRIVASTAVA N, SWERSKY K. RMSProp: divide the gradient by a running average of its recent magnitude. [EB/OL]. [2021-02-11]. . | 
																													
																						| 14 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.  10.1007/s11263-015-0816-y | 
																													
																						| 15 | BIGGIO B, CORONA I, MAIORCA D, et al. Evasion attacks against machine learning at test time [C]// Proceedings of the 2013 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 8190. Berlin: Springer, 2013: 387-402. | 
																													
																						| 16 | EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1625-1634.  10.1109/cvpr.2018.00175 | 
																													
																						| 17 | LECUN Y, CORTES C. MNIST handwritten digit database [DB/OL]. (2010-02-16) [2021-02-14]. . | 
																													
																						| 18 | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. (2019-09-04) [2021-02-13]. . | 
																													
																						| 19 | LIAO F Z, LIANG M, DONG Y P, et al. Defense against adversarial attacks using high-level representation guided denoiser [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1778-1787.  10.1109/cvpr.2018.00191 | 
																													
																						| 20 | GUO C, RANA M, CISSÉ M, et al. Countering adversarial images using input transformations[EB/OL]. (2018-01-25) [2021-02-13]. . | 
																													
																						| 21 | SAMANGOUEI P, KABKAB M, CHELLAPPA R. Defense-GAN: protecting classifiers against adversarial attacks using generative models[EB/OL]. (2018-05-18) [2021-02-13]. . | 
																													
																						| 22 | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial machine learning at scale[EB/OL]. (2017-02-11) [2021-02-14]. .  10.1201/9781351251389-8 | 
																													
																						| 23 | TRAMÈR F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: attacks and defenses[EB/OL]. (2020-04-26) [2021-02-14]. . | 
																													
																						| 24 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826.  10.1109/cvpr.2016.308 | 
																													
																						| 25 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4278-4284.  10.1609/aaai.v31i1.11231 | 
																													
																						| 26 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 630-645. | 
																													
																						| 27 | KRIZHEVSKY A. Learning multiple layers of features from tiny images [EB/OL]. (2009-03-12) [2021-02-14]. . | 
																													
																						| 28 | XIAO Y T, PUN C M. Improving adversarial attacks on deep neural networks via constricted gradient-based perturbations[J]. Information Sciences, 2021, 571: 104-132.  10.1016/j.ins.2021.04.033 |