《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (3): 812-819.DOI: 10.11772/j.issn.1001-9081.2022020243
所属专题: 先进计算
收稿日期:
2022-03-03
修回日期:
2022-05-16
接受日期:
2022-05-23
发布日期:
2022-08-16
出版日期:
2023-03-10
通讯作者:
曾成碧
作者简介:
邱仲睿(1997—),男,山东济南人,硕士研究生,主要研究方向:智能优化算法、新能源并网控制基金资助:
Zhongrui QIU, Hong MIAO, Chengbi ZENG()
Received:
2022-03-03
Revised:
2022-05-16
Accepted:
2022-05-23
Online:
2022-08-16
Published:
2023-03-10
Contact:
Chengbi ZENG
About author:
QIU Zhongrui, born in 1997, M. S. candidate. His research interests include intelligent optimization algorithm, grid-connected control of new energy.Supported by:
摘要:
针对标准黏菌算法(SMA)存在的容易陷入局部最优解、收敛速度慢以及求解精度低等问题,提出一种多策略融合的改进黏菌算法(MSISMA)。首先,引入布朗运动和莱维飞行机制以增强算法的搜索能力;其次,根据算法进行的不同阶段分别改进黏菌的位置更新公式,以提高算法的收敛速度和收敛精度;然后,应用区间自适应的反向学习(IAOBL)策略生成反向种群,以提升种群的多样性和质量,从而提高算法的收敛速度;最后,引入收敛停滞监测策略,当算法陷入局部最优时,通过对部分黏菌个体的位置重新初始化使算法跳出局部最优。选取23个测试函数,将MSISMA与平衡黏菌算法(ESMA)、黏菌-自适应引导差分进化混合算法(SMA-AGDE)、SMA、海洋捕食者算法(MPA)和平衡优化器(EO)进行测试和比较,并对算法运行结果进行Wilcoxon秩和检验。相较于对比算法,MSISMA在19个测试函数上获得最佳平均值,在12个测试函数上获得最佳标准差,优化精度平均提升23.39%~55.97%。实验结果表明,MSISMA的收敛速度、求解精度和鲁棒性明显较优。
中图分类号:
邱仲睿, 苗虹, 曾成碧. 多策略融合的改进黏菌算法[J]. 计算机应用, 2023, 43(3): 812-819.
Zhongrui QIU, Hong MIAO, Chengbi ZENG. Improved slime mould algorithm with multi-strategy fusion[J]. Journal of Computer Applications, 2023, 43(3): 812-819.
算法 | 参数设置 |
---|---|
MSISMA | z=0.03,α=0.002,δ=0.000 02 |
ESMA | z=0.03 |
SMA-AGDE | z=0.03,CR1∈[0.05,0.15],CR2∈[0.9,1.0] |
SMA | z=0.03 |
MPA | P=0.5,FADs=0.2 |
EO | a1=2,a2=1,GP=0.5 |
表1 各算法的参数设置
Tab. 1 Parameter setting for each algorithm
算法 | 参数设置 |
---|---|
MSISMA | z=0.03,α=0.002,δ=0.000 02 |
ESMA | z=0.03 |
SMA-AGDE | z=0.03,CR1∈[0.05,0.15],CR2∈[0.9,1.0] |
SMA | z=0.03 |
MPA | P=0.5,FADs=0.2 |
EO | a1=2,a2=1,GP=0.5 |
函数 | 项目 | MSISMA | ESMA | SMA-AGDE | SMA | MPA | EO |
---|---|---|---|---|---|---|---|
f1 | Avg | 0 | 0 | 7.14E-07 | 1.63E-279 | 3.54E-23 | 5.20E-41 |
Std | 0 | 0 | 3.15E-07 | 0 | 5.42E-23 | 1.34E-40 | |
f2 | Avg | 0 | 1.95E-192 | 1.14E-04 | 6.24E-175 | 2.53E-13 | 5.26E-24 |
Std | 0 | 0 | 4.35E-05 | 0 | 3.15E-13 | 6.10E-24 | |
f3 | Avg | 0 | 0 | 8.58E+02 | 2.84E-292 | 3.35E-04 | 5.39E-09 |
Std | 0 | 0 | 3.99E+02 | 0 | 8.65E-04 | 1.75E-08 | |
f4 | Avg | 0 | 2.14E-257 | 5.47E-01 | 1.95E-145 | 3.28E-09 | 1.89E-10 |
Std | 0 | 0 | 1.53E-01 | 9.73E-145 | 1.60E-09 | 3.62E-10 | |
f5 | Avg | 9.60E-04 | 1.01E+01 | 2.53E+01 | 6.38E+00 | 2.53E+01 | 2.54E+01 |
Std | 1.58E-03 | 1.26E+01 | 6.17E-01 | 1.07E+01 | 4.78E-01 | 3.85E-01 | |
f6 | Avg | 1.86E-07 | 2.29E-03 | 3.59E-06 | 5.79E-03 | 3.96E-08 | 7.86E-06 |
Std | 8.70E-07 | 7.26E-04 | 2.56E-06 | 3.29E-03 | 2.63E-08 | 7.17E-06 | |
f7 | Avg | 1.57E-04 | 1.20E-04 | 1.61E-03 | 1.84E-04 | 1.31E-03 | 1.48E-03 |
Std | 1.78E-04 | 1.30E-04 | 9.55E-04 | 1.40E-04 | 7.30E-04 | 7.66E-04 | |
f8 | Avg | -12 569.49 | -12 569.29 | -8 408.51 | -12 568.95 | -9 007.63 | -9 149.43 |
Std | 2.12E-03 | 1.45E-01 | 6.26E+02 | 3.35E-01 | 4.50E+02 | 6.47E+02 | |
f9 | Avg | 0 | 0 | 2.36E+01 | 0 | 0 | 0 |
Std | 0 | 0 | 8.71E+00 | 0 | 0 | 0 | |
f10 | Avg | 8.88E-16 | 8.88E-16 | 1.46E-04 | 8.88E-16 | 1.60E-12 | 8.94E-15 |
Std | 1.00E-31 | 1.00E-31 | 7.37E-05 | 1.00E-31 | 8.54E-13 | 2.46E-15 | |
f11 | Avg | 0 | 0 | 9.23E-04 | 0 | 0 | 1.31E-03 |
Std | 0 | 0 | 3.82E-03 | 0 | 0 | 5.62E-03 | |
f12 | Avg | 1.29E-09 | 3.36E-03 | 3.38E-07 | 4.43E-03 | 1.32E-08 | 5.91E-07 |
Std | 4.9E-09 | 4.97E-03 | 3.61E-07 | 5.86E-03 | 2.96E-08 | 7.00E-07 | |
f13 | Avg | 6.94E-09 | 5.56E-03 | 6.91E-03 | 8.82E-03 | 1.31E-02 | 4.29E-02 |
Std | 2.88E-09 | 7.19E-03 | 1.98E-02 | 1.20E-02 | 3.06E-02 | 6.12E-02 | |
f14 | Avg | 0.998 0 | 0.998 0 | 1.031 1 | 0.998 0 | 0.998 0 | 0.998 0 |
Std | 3.39E-16 | 6.32E-13 | 1.81E-01 | 6.64E-13 | 3.39E-16 | 3.39E-16 | |
f15 | Avg | 3.30E-04 | 4.71E-04 | 3.57E-04 | 4.87E-04 | 3.07E-04 | 3.12E-03 |
Std | 6.45E-05 | 1.47E-04 | 1.71E-04 | 2.10E-04 | 1.80E-15 | 6.88E-03 | |
f16 | Avg | -1.031 6 | -1.031 6 | -1.031 6 | -1.031 6 | -1.031 6 | -1.031 6 |
Std | 1.26E-12 | 3.81E-09 | 0 | 3.18E-09 | 0 | 0 | |
f17 | Avg | 0.397 9 | 0.397 9 | 0.397 9 | 0.397 9 | 0.397 9 | 0.397 9 |
Std | 3.20E-13 | 1.22E-07 | 1.13E-16 | 6.53E-08 | 1.15E-14 | 1.13E-16 | |
f18 | Avg | 3 | 3 | 3 | 3 | 3 | 3 |
Std | 9.05E-11 | 1.32E-10 | 8.13E-15 | 5.79E-10 | 4.74E-15 | 3.49E-15 | |
f19 | Avg | -3.862 8 | -3.862 8 | -3.862 8 | -3.862 8 | -3.862 8 | -3.862 8 |
Std | 4.00E-11 | 6.73E-06 | 2.71E-15 | 1.97E-07 | 2.71E-15 | 2.71E-15 | |
f20 | Avg | -3.238 8 | -3.241 4 | -3.282 4 | -3.262 4 | -3.322 0 | -3.272 3 |
Std | 5.54E-02 | 5.80E-02 | 5.70E-02 | 6.06E-02 | 1.62E-11 | 6.30E-02 | |
f21 | Avg | -10.153 2 | -10.152 9 | -8.736 2 | -10.152 8 | -10.153 2 | -8.882 8 |
Std | 7.32E-10 | 2.71E-04 | 2.91E+00 | 2.77E-04 | 2.80E-11 | 2.38E+00 | |
f22 | Avg | -10.402 9 | -10.402 7 | -9.272 8 | -10.402 6 | -10.402 9 | -9.239 4 |
Std | 1.04E-09 | 2.06E-04 | 2.60E+00 | 3.02E-04 | 3.23E-11 | 2.67E+00 | |
f23 | Avg | -10.536 4 | -10.536 1 | -9.146 6 | -10.536 0 | -10.536 4 | -9.030 9 |
Std | 8.13E-10 | 1.98E-04 | 2.86E+00 | 2.30E-04 | 3.13E-11 | 3.09E+00 |
表2 不同算法的测试函数优化结果
Tab. 2 Test functions optimization results of different algorithms
函数 | 项目 | MSISMA | ESMA | SMA-AGDE | SMA | MPA | EO |
---|---|---|---|---|---|---|---|
f1 | Avg | 0 | 0 | 7.14E-07 | 1.63E-279 | 3.54E-23 | 5.20E-41 |
Std | 0 | 0 | 3.15E-07 | 0 | 5.42E-23 | 1.34E-40 | |
f2 | Avg | 0 | 1.95E-192 | 1.14E-04 | 6.24E-175 | 2.53E-13 | 5.26E-24 |
Std | 0 | 0 | 4.35E-05 | 0 | 3.15E-13 | 6.10E-24 | |
f3 | Avg | 0 | 0 | 8.58E+02 | 2.84E-292 | 3.35E-04 | 5.39E-09 |
Std | 0 | 0 | 3.99E+02 | 0 | 8.65E-04 | 1.75E-08 | |
f4 | Avg | 0 | 2.14E-257 | 5.47E-01 | 1.95E-145 | 3.28E-09 | 1.89E-10 |
Std | 0 | 0 | 1.53E-01 | 9.73E-145 | 1.60E-09 | 3.62E-10 | |
f5 | Avg | 9.60E-04 | 1.01E+01 | 2.53E+01 | 6.38E+00 | 2.53E+01 | 2.54E+01 |
Std | 1.58E-03 | 1.26E+01 | 6.17E-01 | 1.07E+01 | 4.78E-01 | 3.85E-01 | |
f6 | Avg | 1.86E-07 | 2.29E-03 | 3.59E-06 | 5.79E-03 | 3.96E-08 | 7.86E-06 |
Std | 8.70E-07 | 7.26E-04 | 2.56E-06 | 3.29E-03 | 2.63E-08 | 7.17E-06 | |
f7 | Avg | 1.57E-04 | 1.20E-04 | 1.61E-03 | 1.84E-04 | 1.31E-03 | 1.48E-03 |
Std | 1.78E-04 | 1.30E-04 | 9.55E-04 | 1.40E-04 | 7.30E-04 | 7.66E-04 | |
f8 | Avg | -12 569.49 | -12 569.29 | -8 408.51 | -12 568.95 | -9 007.63 | -9 149.43 |
Std | 2.12E-03 | 1.45E-01 | 6.26E+02 | 3.35E-01 | 4.50E+02 | 6.47E+02 | |
f9 | Avg | 0 | 0 | 2.36E+01 | 0 | 0 | 0 |
Std | 0 | 0 | 8.71E+00 | 0 | 0 | 0 | |
f10 | Avg | 8.88E-16 | 8.88E-16 | 1.46E-04 | 8.88E-16 | 1.60E-12 | 8.94E-15 |
Std | 1.00E-31 | 1.00E-31 | 7.37E-05 | 1.00E-31 | 8.54E-13 | 2.46E-15 | |
f11 | Avg | 0 | 0 | 9.23E-04 | 0 | 0 | 1.31E-03 |
Std | 0 | 0 | 3.82E-03 | 0 | 0 | 5.62E-03 | |
f12 | Avg | 1.29E-09 | 3.36E-03 | 3.38E-07 | 4.43E-03 | 1.32E-08 | 5.91E-07 |
Std | 4.9E-09 | 4.97E-03 | 3.61E-07 | 5.86E-03 | 2.96E-08 | 7.00E-07 | |
f13 | Avg | 6.94E-09 | 5.56E-03 | 6.91E-03 | 8.82E-03 | 1.31E-02 | 4.29E-02 |
Std | 2.88E-09 | 7.19E-03 | 1.98E-02 | 1.20E-02 | 3.06E-02 | 6.12E-02 | |
f14 | Avg | 0.998 0 | 0.998 0 | 1.031 1 | 0.998 0 | 0.998 0 | 0.998 0 |
Std | 3.39E-16 | 6.32E-13 | 1.81E-01 | 6.64E-13 | 3.39E-16 | 3.39E-16 | |
f15 | Avg | 3.30E-04 | 4.71E-04 | 3.57E-04 | 4.87E-04 | 3.07E-04 | 3.12E-03 |
Std | 6.45E-05 | 1.47E-04 | 1.71E-04 | 2.10E-04 | 1.80E-15 | 6.88E-03 | |
f16 | Avg | -1.031 6 | -1.031 6 | -1.031 6 | -1.031 6 | -1.031 6 | -1.031 6 |
Std | 1.26E-12 | 3.81E-09 | 0 | 3.18E-09 | 0 | 0 | |
f17 | Avg | 0.397 9 | 0.397 9 | 0.397 9 | 0.397 9 | 0.397 9 | 0.397 9 |
Std | 3.20E-13 | 1.22E-07 | 1.13E-16 | 6.53E-08 | 1.15E-14 | 1.13E-16 | |
f18 | Avg | 3 | 3 | 3 | 3 | 3 | 3 |
Std | 9.05E-11 | 1.32E-10 | 8.13E-15 | 5.79E-10 | 4.74E-15 | 3.49E-15 | |
f19 | Avg | -3.862 8 | -3.862 8 | -3.862 8 | -3.862 8 | -3.862 8 | -3.862 8 |
Std | 4.00E-11 | 6.73E-06 | 2.71E-15 | 1.97E-07 | 2.71E-15 | 2.71E-15 | |
f20 | Avg | -3.238 8 | -3.241 4 | -3.282 4 | -3.262 4 | -3.322 0 | -3.272 3 |
Std | 5.54E-02 | 5.80E-02 | 5.70E-02 | 6.06E-02 | 1.62E-11 | 6.30E-02 | |
f21 | Avg | -10.153 2 | -10.152 9 | -8.736 2 | -10.152 8 | -10.153 2 | -8.882 8 |
Std | 7.32E-10 | 2.71E-04 | 2.91E+00 | 2.77E-04 | 2.80E-11 | 2.38E+00 | |
f22 | Avg | -10.402 9 | -10.402 7 | -9.272 8 | -10.402 6 | -10.402 9 | -9.239 4 |
Std | 1.04E-09 | 2.06E-04 | 2.60E+00 | 3.02E-04 | 3.23E-11 | 2.67E+00 | |
f23 | Avg | -10.536 4 | -10.536 1 | -9.146 6 | -10.536 0 | -10.536 4 | -9.030 9 |
Std | 8.13E-10 | 1.98E-04 | 2.86E+00 | 2.30E-04 | 3.13E-11 | 3.09E+00 |
函数 | ESMA | SMA-AGDE | SMA | MPA | EO |
---|---|---|---|---|---|
+/-/= | 17/0/6 | 19/3/1 | 17/0/6 | 12/7/4 | 16/3/4 |
f1 | N/A | 1.21E-12 | 8.15E-02 | 1.21E-12 | 1.21E-12 |
f2 | 1.66E-11 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 |
f3 | N/A | 1.21E-12 | 2.16E-02 | 1.21E-12 | 1.21E-12 |
f4 | 6.62E-04 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 |
f5 | 3.02E-11 | 3.02E-11 | 3.69E-11 | 3.02E-11 | 3.02E-11 |
f6 | 3.02E-11 | 2.37E-10 | 3.02E-11 | 7.98E-02 | 1.21E-10 |
f7 | 2.52E-01 | 1.46E-10 | 2.06E-01 | 1.21E-10 | 6.70E-11 |
f8 | 6.06E-11 | 3.02E-11 | 5.49E-11 | 3.02E-11 | 3.02E-11 |
f9 | N/A | 1.21E-12 | N/A | N/A | N/A |
f10 | N/A | 1.21E-12 | N/A | 1.21E-12 | 8.64E-14 |
f11 | N/A | 1.21E-12 | N/A | N/A | 1.61E-01 |
f12 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 4.62E-10 | 3.02E-11 |
f13 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 |
f14 | 1.21E-12 | 3.34E-01 | 1.21E-12 | N/A | N/A |
f15 | 3.65E-08 | 1.56E-02 | 1.25E-07 | 3.02E-11 | 4.07E-05 |
f16 | 3.02E-11 | 1.21E-12 | 1.17E-09 | 1.21E-12 | 1.21E-12 |
f17 | 3.02E-11 | 1.21E-12 | 3.02E-11 | 2.19E-11 | 1.21E-12 |
f18 | 4.51E-02 | 1.04E-11 | 2.13E-15 | 1.14E-11 | 4.08E-12 |
f19 | 3.02E-11 | 1.21E-12 | 3.02E-11 | 1.21E-12 | 1.21E-12 |
f20 | 4.98E-04 | 5.78E-08 | 1.72E-01 | 3.02E-11 | 1.52E-06 |
f21 | 3.02E-11 | 3.81E-05 | 3.02E-11 | 3.02E-11 | 3.73E-01 |
f22 | 3.02E-11 | 4.28E-06 | 3.02E-11 | 3.02E-11 | 2.80E-03 |
f23 | 3.02E-11 | 3.81E-05 | 3.02E-11 | 3.02E-11 | 7.00E-03 |
表3 Wilcoxon秩和检验结果
Tab. 3 Wilcoxon rank-sum test results
函数 | ESMA | SMA-AGDE | SMA | MPA | EO |
---|---|---|---|---|---|
+/-/= | 17/0/6 | 19/3/1 | 17/0/6 | 12/7/4 | 16/3/4 |
f1 | N/A | 1.21E-12 | 8.15E-02 | 1.21E-12 | 1.21E-12 |
f2 | 1.66E-11 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 |
f3 | N/A | 1.21E-12 | 2.16E-02 | 1.21E-12 | 1.21E-12 |
f4 | 6.62E-04 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 |
f5 | 3.02E-11 | 3.02E-11 | 3.69E-11 | 3.02E-11 | 3.02E-11 |
f6 | 3.02E-11 | 2.37E-10 | 3.02E-11 | 7.98E-02 | 1.21E-10 |
f7 | 2.52E-01 | 1.46E-10 | 2.06E-01 | 1.21E-10 | 6.70E-11 |
f8 | 6.06E-11 | 3.02E-11 | 5.49E-11 | 3.02E-11 | 3.02E-11 |
f9 | N/A | 1.21E-12 | N/A | N/A | N/A |
f10 | N/A | 1.21E-12 | N/A | 1.21E-12 | 8.64E-14 |
f11 | N/A | 1.21E-12 | N/A | N/A | 1.61E-01 |
f12 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 4.62E-10 | 3.02E-11 |
f13 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 |
f14 | 1.21E-12 | 3.34E-01 | 1.21E-12 | N/A | N/A |
f15 | 3.65E-08 | 1.56E-02 | 1.25E-07 | 3.02E-11 | 4.07E-05 |
f16 | 3.02E-11 | 1.21E-12 | 1.17E-09 | 1.21E-12 | 1.21E-12 |
f17 | 3.02E-11 | 1.21E-12 | 3.02E-11 | 2.19E-11 | 1.21E-12 |
f18 | 4.51E-02 | 1.04E-11 | 2.13E-15 | 1.14E-11 | 4.08E-12 |
f19 | 3.02E-11 | 1.21E-12 | 3.02E-11 | 1.21E-12 | 1.21E-12 |
f20 | 4.98E-04 | 5.78E-08 | 1.72E-01 | 3.02E-11 | 1.52E-06 |
f21 | 3.02E-11 | 3.81E-05 | 3.02E-11 | 3.02E-11 | 3.73E-01 |
f22 | 3.02E-11 | 4.28E-06 | 3.02E-11 | 3.02E-11 | 2.80E-03 |
f23 | 3.02E-11 | 3.81E-05 | 3.02E-11 | 3.02E-11 | 7.00E-03 |
1 | ROSTAMI M, BERAHMAND K, NASIRI E, et al. Review of swarm intelligence-based feature selection methods[J]. Engineering Applications of Artificial Intelligence, 2021, 100: No.104210. 10.1016/j.engappai.2021.104210 |
2 | FENG Y H, DEB S, WANG G G, et al. Monarch butterfly optimization: a comprehensive review[J]. Expert Systems with Applications, 2021, 168: No.114418. 10.1016/j.eswa.2020.114418 |
3 | 雍欣,高岳林,赫亚华,等. 多策略融合的改进萤火虫优化算法[J]. 计算机应用, 2022, 42(12):3847-3855. 10.11772/j.issn.1001-9081.2021101830 |
YONG X, GAO Y L, HE Y H, et al. Improved firefly optimization algorithm based on multi-strategy fusion[J]. Journal of Computer Applications, 2022, 42(12):3847-3855. 10.11772/j.issn.1001-9081.2021101830 | |
4 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks - Volume 4. Piscataway: IEEE, 1995: 1942-1948. |
5 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. 10.1016/j.advengsoft.2013.12.007 |
6 | LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111:300-323. 10.1016/j.future.2020.03.055 |
7 | ZHAO S W, WANG P J, HEIDARI A A, et al. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease[J]. Computers in Biology and Medicine, 2021, 134: No.104427. 10.1016/j.compbiomed.2021.104427 |
8 | 王鑫禄,刘大有,刘思含,等. 基于黏菌算法的蛋白质多序列比对[J/OL]. 吉林大学学报(工学版) (2021-08-19) [2022-02-22].. |
WANG X L, LIU D Y, LIU S H, et al. Multiple sequence alignment of proteins based on slime mold algorithm[J/OL]. Journal of Jilin University (Engineering and Technology Edition) (2021-08-19) [2022-02-22].. | |
9 | AGARWAL D, BHARTI P S. Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots[J]. Applied Soft Computing, 2021, 107: No.107372. 10.1016/j.asoc.2021.107372 |
10 | VASHISHTHA G, CHAUHAN S, SINGH M, et al. Bearing defect identification by swarm decomposition considering permutation entropy measure and opposition-based slime mould algorithm[J]. Measurement, 2021, 178: No.109389. 10.1016/j.measurement.2021.109389 |
11 | NAIK M K, PANDA R, ABRAHAM A. An entropy minimization based multilevel colour thresholding technique for analysis of breast thermograms using equilibrium slime mould algorithm[J]. Applied Soft Computing, 2021, 113(Pt B): No.107955. 10.1016/j.asoc.2021.107955 |
12 | HOUSSEIN E H, MAHDY M A, BLONDIN M J, et al. Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems[J]. Expert Systems with Applications, 2021, 174: No.114689. 10.1016/j.eswa.2021.114689 |
13 | 郭雨鑫,刘升,张磊,等. 精英反向与二次插值改进的黏菌算法[J]. 计算机应用研究, 2021, 38(12):3651-3656. |
GUO Y X, LIU S, ZHANG L, et al. Elite opposition-based learning quadratic interpolation slime mould algorithm[J]. Application Research of Computers, 2021, 38(12): 3651-3656. | |
14 | YU C Y, HEIDARI A A, XUE X, et al. Boosting quantum rotation gate embedded slime mould algorithm[J]. Expert Systems with Applications, 2021, 181: No.115082. 10.1016/j.eswa.2021.115082 |
15 | HOUSSEIN E H, HELMY B E D, REZK H, et al. An efficient orthogonal opposition-based learning slime mould algorithm for maximum power point tracking[J]. Neural Computing and Applications, 2022, 34(5): 3671-3695. 10.1007/s00521-021-06634-y |
16 | 沙林秀,聂凡,高倩,等. 基于布朗运动与梯度信息的交替优化算法[J]. 计算机应用, 2022, 42(7):2139-2145. |
SHA L X, NIE F, GAO Q, et al. Alternately optimizing algorithm based on Brownian movement and gradient information[J]. Journal of Computer Applications, 2022, 42(7):2139-2145. | |
17 | 汤安迪,韩统,徐登武,等. 基于等级制度和布朗运动的混沌麻雀搜索算法[J]. 空军工程大学学报(自然科学版), 2021, 22(3): 96-103. 10.3969/j.issn.1009-3516.2021.03.015 |
TANG A D, HAN T, XU D W, et al. A chaos sparrow search algorithm based on hierarchy and Brownian motion[J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(3): 96-103. 10.3969/j.issn.1009-3516.2021.03.015 | |
18 | WANG G G, DEB S, CUI Z H. Monarch butterfly optimization[J]. Neural Computing and Applications, 2019, 31(7):1995-2014. 10.1007/s00521-015-1923-y |
19 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. 10.1016/j.future.2019.02.028 |
20 | MANTEGNA R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(5): 4677-4683. 10.1103/physreve.49.4677 |
21 | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation Jointly with International Conference on Intelligent Agents, Web Technologies and Internet Commerce - Volume 1. Piscataway: IEEE, 2005: 695-701. 10.1109/cimca.2005.1631428 |
22 | 申元霞,张学锋,方馨,等. 多尺度正余弦优化算法[J]. 控制与决策, 2022, 37(11):2860-2868. |
SHEN Y X, ZHANG X F, FANG X, et al. A multi-scale sine cosine algorithm for optimization problems[J]. Control and Decision, 2022, 37(11):2860-2868. | |
23 | FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: No.113377. 10.1016/j.eswa.2020.113377 |
24 | FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: No.105190. 10.1016/j.knosys.2019.105190 |
[1] | 欧云, 周恺卿, 尹鹏飞, 刘雪薇. 双收敛因子策略下的改进灰狼优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2679-2685. |
[2] | 高昊, 张庆科, 卜降龙, 李俊青, 张化祥. 基于协同变异与莱维飞行策略的教与学优化算法及其应用[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1355-1364. |
[3] | 陈俊, 何庆, 李守玉. 基于黄金莱维引导机制的阿基米德优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2807-2815. |
[4] | 沙林秀, 聂凡, 高倩, 孟号. 基于布朗运动与梯度信息的交替优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2139-2145. |
[5] | 雍欣, 高岳林, 赫亚华, 王惠敏. 多策略融合的改进萤火虫算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3847-3855. |
[6] | 陆国庆, 孙昊. 基于随机行走的群机器人二维地图构建[J]. 计算机应用, 2021, 41(7): 2121-2127. |
[7] | 贾鹤鸣, 李瑶, 姜子超, 孙康健. 基于改进共生生物搜索算法的林火图像多阈值分割[J]. 计算机应用, 2021, 41(5): 1465-1470. |
[8] | 胡秀华, 王长元, 肖锋, 王亚文. 利用空间结构信息的相关滤波目标跟踪算法[J]. 计算机应用, 2019, 39(4): 1150-1156. |
[9] | 郑延斌, 席鹏雪, 王林林, 樊文鑫, 韩梦云. 基于人工势场法的多智能体编队避障方法[J]. 计算机应用, 2018, 38(12): 3380-3384. |
[10] | 徐同伟, 何庆, 吴意乐, 顾海霞. 基于改进离散果蝇优化算法的WSN广播路由算法[J]. 计算机应用, 2017, 37(4): 965-969. |
[11] | 张雪媛 王永刚 张琼. 基于分数布朗运动的自相似流量判别及生成方法[J]. 计算机应用, 2013, 33(04): 947-949. |
[12] | 罗建平 邬群勇 朱莉. 面向对象的全时域移动对象数据模型[J]. 计算机应用, 2013, 33(04): 1015-1017. |
[13] | 徐文杰 陈庆奎. 增量更新并行Web爬虫系统[J]. 计算机应用, 2009, 29(4): 1117-1119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||