| 1 | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C/OL]// Proceedings of the 2018 International Conference on Learning Representations [2023-08-01]. . | 
																													
																						| 2 | GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. | 
																													
																						| 3 | WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 1907-1913. | 
																													
																						| 4 | SHAO W, JIN Z, WANG S, et al. Long-term spatiotemporal forecasting via dynamic multiple-graph attention[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2225-2232. | 
																													
																						| 5 | LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4189-4196. | 
																													
																						| 6 | WANG X, MA Y, WANG Y. Traffic flow prediction via spatial temporal graph neural network[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020:1082-1092. | 
																													
																						| 7 | ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1234-1241. | 
																													
																						| 8 | 夏进, 王正群,朱世明. 基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43(4):1129-1135. | 
																													
																						|  | XIA J, WANG Z Q, ZHU S M. Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43(4):1129-1135. | 
																													
																						| 9 | WANG C, ZHU Y, ZANG T, et al. Modeling inter-station relationships with attentive temporal graph convolutional network for air quality prediction[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 616-634. | 
																													
																						| 10 | TRIRAT P, YOON S, LEE J-G, et al. MG-TAR: multi-view graph convolutional networks for traffic accident risk prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4):3779-3794. | 
																													
																						| 11 | LI H, JIN D, LI X, et al. DMGF-Net: an efficient dynamic multi-graph fusion network for traffic prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(7): Article No. 97. | 
																													
																						| 12 | GE L, JIA Y, LI Q, et al. Dynamic multi-graph convolution recurrent neural network for traffic speed prediction[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(5):7319-7332. | 
																													
																						| 13 | TAO S, ZHANG H, YANG F. Multiple information spatial-temporal attention based graph convolution network for traffic prediction[J]. Applied Soft Computing, 2023, 136:110052. | 
																													
																						| 14 | SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. | 
																													
																						| 15 | XU Y, LYU Y, XIONG G, et al. Adaptive feature fusion networks for origin-destination passenger flow prediction in metro systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5):5296-5312. | 
																													
																						| 16 | WANG B, ZHANG Y, SHI J, et al. Knowledge expansion and consolidation for continual traffic prediction with expanding graphs[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7):7190-7201. | 
																													
																						| 17 | HUO G, ZHANG Y, WANG B, et al. Hierarchical spatio-temporal graph convolutional networks and transformer network for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4):3855-3867. | 
																													
																						| 18 | XU Z, KANG Y, CAO Y. High-resolution urban flows forecasting with coarse-grained spatiotemporal data[J]. IEEE Transaction on Artificial Intelligence, 2023, 4(2):315-327. | 
																													
																						| 19 | 王海起, 王志海, 李留珂, 等. 基于网格划分的城市短时交通流量时空预测模型[J]. 计算机应用, 2022, 42(7):2274-2280. | 
																													
																						|  | WANG H Q, WANG Z H, LI L K, et al. Spatial-temporal prediction model of urban short-term traffic flow based on grid division[J]. Journal of Computer Applications, 2023, 42(7):2274-2280. | 
																													
																						| 20 | GENG X, LI Y, WANG L. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 36(1): 3656-3663. | 
																													
																						| 21 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018:3634-3640. | 
																													
																						| 22 | CHOI J, CHOI H, HWANG J, et al. Graph neural controlled differential equations for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(6):6367-6374. | 
																													
																						| 23 | GUO S, LIN Y, WAN H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11):5415-5428. | 
																													
																						| 24 | LI Q, HAN Z, WU X. Deeper insights into graph convolutional networks for semi-supervised learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1):3538-3545. | 
																													
																						| 25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017:6000-6010. | 
																													
																						| 26 | JIANG J, HAN C, ZHAO X, et al. PDFormer: propagation delay-aware dynamic long-range Transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4365-4373. | 
																													
																						| 27 | LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 5243-5253. | 
																													
																						| 28 | WANG J, JIANG J, JIANG W, et al. LibCity: an open library for traffic prediction[C]// Proceedings of the 29th International Conference on Advances in Geographic Information Systems. New York: ACM, 2021:145-148. | 
																													
																						| 29 | JIANG R, WANG Z, YONG J, et. al . Spatio-temporal meta-graph learning for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8078-8086. |