《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (11): 3583-3592.DOI: 10.11772/j.issn.1001-9081.2024111593
• 数据科学与技术 • 上一篇
收稿日期:2024-11-11
修回日期:2025-01-26
接受日期:2025-02-08
发布日期:2025-02-21
出版日期:2025-11-10
通讯作者:
赵兴旺
作者简介:李顺勇(1975—),男,山西大同人,教授,博士,CCF专业会员,主要研究方向:统计机器学习、数据挖掘基金资助:
Shunyong LI1,2, Kun LIU1, Lina CAO1, Xingwang ZHAO3,4(
)
Received:2024-11-11
Revised:2025-01-26
Accepted:2025-02-08
Online:2025-02-21
Published:2025-11-10
Contact:
Xingwang ZHAO
About author:LI Shunyong, born in 1975, Ph. D., professor. His research interests include statistical machine learning, data mining.Supported by:摘要:
目前大多数多视图聚类算法存在融合机制不够完善、对多视图协同关系挖掘不足以及鲁棒性较弱等问题,导致聚类结果一致性偏低,且在噪声和冗余信息下的性能不够稳健。针对上述问题,提出一种基于二部图和一致图学习的多视图聚类算法(BGC-MVC),旨在通过融合各视图信息来提升聚类的一致性和互补性。该算法通过构造二部图以捕获不同视图之间的邻域关系,并通过学习一致性图强化视图间的相似性。它将原始多视图数据的嵌入整合进一个统一的框架中,结合了图学习与聚类过程,从而能提高聚类的整体效果。实验结果表明,BGC-MVC在满足收敛性条件下的准确度、F-score、归一化互信息(NMI)和纯度均有明显的提升。其中,在MSRC_v1数据集上的F-score比LMVSC(Large-scale Multi-View Subspace Clustering)算法提高了19.48个百分点,并且表现出更强的鲁棒性与准确度。
中图分类号:
李顺勇, 刘坤, 曹利娜, 赵兴旺. 基于二部图和一致图学习的多视图聚类算法[J]. 计算机应用, 2025, 45(11): 3583-3592.
Shunyong LI, Kun LIU, Lina CAO, Xingwang ZHAO. Multi-view clustering algorithm based on bipartite graph and consensus graph learning[J]. Journal of Computer Applications, 2025, 45(11): 3583-3592.
| 符号 | 含义 | 符号 | 含义 | 符号 | 含义 |
|---|---|---|---|---|---|
| n | 样本数 | 第v个视图的锚点矩阵 | 嵌入矩阵 | ||
| v | 第v个视图 | 二部图矩阵 | 谱嵌入矩阵 | ||
| m | 视图数 | 第v个视图的相似度矩阵 | 聚类指示矩阵 | ||
| 第v个视图的特征维数 | 一致图矩阵 | 第v个视图的权重 | |||
| 第v个视图的数据矩阵 |
表1 符号及定义
Tab. 1 Symbols and definitions
| 符号 | 含义 | 符号 | 含义 | 符号 | 含义 |
|---|---|---|---|---|---|
| n | 样本数 | 第v个视图的锚点矩阵 | 嵌入矩阵 | ||
| v | 第v个视图 | 二部图矩阵 | 谱嵌入矩阵 | ||
| m | 视图数 | 第v个视图的相似度矩阵 | 聚类指示矩阵 | ||
| 第v个视图的特征维数 | 一致图矩阵 | 第v个视图的权重 | |||
| 第v个视图的数据矩阵 |
| 数据集 | 样本数 | 视图数 | 聚类数 | 第v个视图的特征维数dv | |||||
|---|---|---|---|---|---|---|---|---|---|
| d1 | d2 | d3 | d4 | d5 | d6 | ||||
| 3sources | 169 | 3 | 6 | 3 560 | 3 631 | 3 068 | — | — | — |
| BBCsport | 116 | 4 | 5 | 1 991 | 2 063 | 2 113 | 2 156 | — | — |
| Cal7 | 1 474 | 6 | 7 | 48 | 40 | 254 | 1 984 | 512 | 926 |
| MSRC_v1 | 210 | 6 | 7 | 1 302 | 48 | 512 | 100 | 256 | 210 |
| Handwritten | 2 000 | 6 | 10 | 240 | 76 | 216 | 47 | 64 | 6 |
表2 多视图数据集的描述
Tab. 2 Description of multi-view datasets
| 数据集 | 样本数 | 视图数 | 聚类数 | 第v个视图的特征维数dv | |||||
|---|---|---|---|---|---|---|---|---|---|
| d1 | d2 | d3 | d4 | d5 | d6 | ||||
| 3sources | 169 | 3 | 6 | 3 560 | 3 631 | 3 068 | — | — | — |
| BBCsport | 116 | 4 | 5 | 1 991 | 2 063 | 2 113 | 2 156 | — | — |
| Cal7 | 1 474 | 6 | 7 | 48 | 40 | 254 | 1 984 | 512 | 926 |
| MSRC_v1 | 210 | 6 | 7 | 1 302 | 48 | 512 | 100 | 256 | 210 |
| Handwritten | 2 000 | 6 | 10 | 240 | 76 | 216 | 47 | 64 | 6 |
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.496 1 | 0.277 2 | 0.372 6 | 0.591 1 | 0.503 8 |
SC | 0.414 2 | 0.422 4 | 0.440 3 | 0.542 9 | 0.548 5 |
EOMSC-CA | 0.572 8 | 0.500 1 | 0.835 1 | 0.671 4 | 0.834 0 |
EMKMC | 0.656 8 | 0.666 2 | 0.516 0 | 0.633 7 | 0.572 7 |
LMVSC | 0.499 4 | 0.506 0 | 0.726 6 | 0.720 4 | 0.896 5 |
DUBGL | 0.889 0 | 0.703 2 | 0.727 1 | 0.887 5 | |
GMC | 0.692 3 | 0.560 3 | 0.692 0 | 0.747 6 | 0.882 0 |
COMVSC | 0.686 4 | 0.698 3 | 0.771 4 | 0.945 0 | |
IBFDMVC | 0.796 0 | 0.736 8 | 0.895 0 | 0.896 5 | |
SIB-MSC | 0.774 7 | 0.715 6 | 0.714 5 | 0.724 5 | 0.805 7 |
BGC-MVC | 0.826 3 | 0.704 8 | 0.735 9 |
表3 不同聚类算法在数据集上的准确度
Tab. 3 Accuracies of different clustering algorithms on datasets
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.496 1 | 0.277 2 | 0.372 6 | 0.591 1 | 0.503 8 |
SC | 0.414 2 | 0.422 4 | 0.440 3 | 0.542 9 | 0.548 5 |
EOMSC-CA | 0.572 8 | 0.500 1 | 0.835 1 | 0.671 4 | 0.834 0 |
EMKMC | 0.656 8 | 0.666 2 | 0.516 0 | 0.633 7 | 0.572 7 |
LMVSC | 0.499 4 | 0.506 0 | 0.726 6 | 0.720 4 | 0.896 5 |
DUBGL | 0.889 0 | 0.703 2 | 0.727 1 | 0.887 5 | |
GMC | 0.692 3 | 0.560 3 | 0.692 0 | 0.747 6 | 0.882 0 |
COMVSC | 0.686 4 | 0.698 3 | 0.771 4 | 0.945 0 | |
IBFDMVC | 0.796 0 | 0.736 8 | 0.895 0 | 0.896 5 | |
SIB-MSC | 0.774 7 | 0.715 6 | 0.714 5 | 0.724 5 | 0.805 7 |
BGC-MVC | 0.826 3 | 0.704 8 | 0.735 9 |
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.455 6 | 0.456 9 | 0.465 4 | 0.695 2 | 0.632 0 |
SC | 0.486 6 | 0.390 9 | 0.427 8 | 0.456 8 | 0.680 8 |
EOMSC-CA | 0.596 2 | 0.577 6 | 0.796 7 | 0.547 5 | 0.873 8 |
EMKMC | 0.716 0 | 0.701 7 | 0.813 0 | 0.709 5 | 0.712 5 |
DUBGL | 0.835 3 | 0.756 8 | 0.795 8 | ||
LMVSC | 0.520 7 | 0.603 4 | 0.694 7 | 0.714 3 | 0.854 0 |
GMC | 0.604 7 | 0.443 9 | 0.721 7 | 0.696 8 | 0.865 3 |
COMVSC | 0.678 8 | 0.532 2 | 0.772 8 | 0.677 6 | |
IBFDMVC | 0.805 4 | 0.753 4 | 0.785 4 | 0.883 4 | |
SIB-MSC | 0.754 2 | 0.783 5 | 0.735 4 | 0.845 7 | 0.836 9 |
BGC-MVC | 0.833 8 | 0.823 3 | 0.909 1 | 0.919 4 |
表4 不同聚类算法在数据集上的F-score
Tab. 4 F-scores of different clustering algorithms on datasets
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.455 6 | 0.456 9 | 0.465 4 | 0.695 2 | 0.632 0 |
SC | 0.486 6 | 0.390 9 | 0.427 8 | 0.456 8 | 0.680 8 |
EOMSC-CA | 0.596 2 | 0.577 6 | 0.796 7 | 0.547 5 | 0.873 8 |
EMKMC | 0.716 0 | 0.701 7 | 0.813 0 | 0.709 5 | 0.712 5 |
DUBGL | 0.835 3 | 0.756 8 | 0.795 8 | ||
LMVSC | 0.520 7 | 0.603 4 | 0.694 7 | 0.714 3 | 0.854 0 |
GMC | 0.604 7 | 0.443 9 | 0.721 7 | 0.696 8 | 0.865 3 |
COMVSC | 0.678 8 | 0.532 2 | 0.772 8 | 0.677 6 | |
IBFDMVC | 0.805 4 | 0.753 4 | 0.785 4 | 0.883 4 | |
SIB-MSC | 0.754 2 | 0.783 5 | 0.735 4 | 0.845 7 | 0.836 9 |
BGC-MVC | 0.833 8 | 0.823 3 | 0.909 1 | 0.919 4 |
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.535 6 | 0.433 6 | 0.471 0 | 0.650 5 | 0.610 8 |
SC | 0.441 4 | 0.289 5 | 0.486 8 | 0.485 3 | 0.706 7 |
EOMSC-CA | 0.519 4 | 0.474 7 | 0.521 9 | 0.560 8 | 0.776 7 |
EMKMC | 0.673 7 | 0.743 8 | 0.544 0 | 0.685 1 | 0.618 3 |
LMVSC | 0.575 4 | 0.544 3 | 0.519 3 | 0.759 6 | 0.844 3 |
DUBGL | 0.806 9 | 0.609 2 | 0.767 3 | 0.800 1 | |
GMC | 0.621 6 | 0.477 1 | 0.659 5 | 0.750 9 | 0.804 1 |
COMVSC | 0.530 1 | 0.534 6 | 0.531 1 | 0.704 0 | 0.892 5 |
IBFDMVC | 0.746 5 | 0.714 6 | 0.765 2 | 0.832 3 | |
SIB-MSC | 0.775 4 | 0.725 7 | 0.726 7 | 0.805 3 | |
BGC-MVC | 0.729 3 | 0.698 2 | 0.836 3 |
表5 不同聚类算法在数据集上的NMI值
Tab. 5 NMI values of different clustering algorithms on datasets
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.535 6 | 0.433 6 | 0.471 0 | 0.650 5 | 0.610 8 |
SC | 0.441 4 | 0.289 5 | 0.486 8 | 0.485 3 | 0.706 7 |
EOMSC-CA | 0.519 4 | 0.474 7 | 0.521 9 | 0.560 8 | 0.776 7 |
EMKMC | 0.673 7 | 0.743 8 | 0.544 0 | 0.685 1 | 0.618 3 |
LMVSC | 0.575 4 | 0.544 3 | 0.519 3 | 0.759 6 | 0.844 3 |
DUBGL | 0.806 9 | 0.609 2 | 0.767 3 | 0.800 1 | |
GMC | 0.621 6 | 0.477 1 | 0.659 5 | 0.750 9 | 0.804 1 |
COMVSC | 0.530 1 | 0.534 6 | 0.531 1 | 0.704 0 | 0.892 5 |
IBFDMVC | 0.746 5 | 0.714 6 | 0.765 2 | 0.832 3 | |
SIB-MSC | 0.775 4 | 0.725 7 | 0.726 7 | 0.805 3 | |
BGC-MVC | 0.729 3 | 0.698 2 | 0.836 3 |
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.427 9 | 0.453 4 | 0.363 4 | 0.525 4 | 0.525 7 |
SC | 0.458 6 | 0.425 4 | 0.326 7 | 0.552 7 | 0.646 5 |
EOMSC-CA | 0.595 2 | 0.683 4 | 0.577 3 | 0.706 2 | 0.793 5 |
EMKMC | 0.576 7 | 0.676 2 | 0.676 3 | 0.726 5 | 0.836 5 |
LMVSC | 0.638 7 | 0.726 5 | 0.794 7 | 0.784 5 | |
DUBGL | 0.845 4 | 0.884 6 | 0.845 6 | ||
GMC | 0.616 3 | 0.796 1 | 0.834 3 | 0.914 5 | 0.805 3 |
COMVSC | 0.714 6 | 0.806 5 | 0.836 7 | 0.825 6 | 0.823 7 |
IBFDMVC | 0.735 6 | 0.754 3 | 0.794 6 | 0.900 0 | 0.895 6 |
SIB-MSC | 0.757 8 | 0.796 3 | 0.774 3 | 0.796 7 | |
BGC-MVC | 0.795 6 | 0.829 6 | 0.895 1 | 0.905 4 |
表6 不同聚类算法在数据集上的Purity值
Tab. 6 Purity values of different clustering algorithms on datasets
算法 | 3sources | BBCsport | Cal7 | MSRC_v1 | Handwritten |
|---|---|---|---|---|---|
K-means | 0.427 9 | 0.453 4 | 0.363 4 | 0.525 4 | 0.525 7 |
SC | 0.458 6 | 0.425 4 | 0.326 7 | 0.552 7 | 0.646 5 |
EOMSC-CA | 0.595 2 | 0.683 4 | 0.577 3 | 0.706 2 | 0.793 5 |
EMKMC | 0.576 7 | 0.676 2 | 0.676 3 | 0.726 5 | 0.836 5 |
LMVSC | 0.638 7 | 0.726 5 | 0.794 7 | 0.784 5 | |
DUBGL | 0.845 4 | 0.884 6 | 0.845 6 | ||
GMC | 0.616 3 | 0.796 1 | 0.834 3 | 0.914 5 | 0.805 3 |
COMVSC | 0.714 6 | 0.806 5 | 0.836 7 | 0.825 6 | 0.823 7 |
IBFDMVC | 0.735 6 | 0.754 3 | 0.794 6 | 0.900 0 | 0.895 6 |
SIB-MSC | 0.757 8 | 0.796 3 | 0.774 3 | 0.796 7 | |
BGC-MVC | 0.795 6 | 0.829 6 | 0.895 1 | 0.905 4 |
| 算法 | Breast | Colon | GBM | Melanoma |
|---|---|---|---|---|
| EOMSC-CA | 0.467 7 | 0.362 3 | 0.014 3 | 0.007 3 |
| EMKMC | 0.563 2 | 0.627 6 | 0.283 6 | 0.025 2 |
| DUBGL | 0.015 4 | 0.254 2 | 0.193 5 | 0.179 3 |
| LMVSC | 0.025 6 | 0.042 5 | 0.028 3 | 0.284 2 |
| GMC | 0.014 5 | 0.266 7 | 0.156 8 | 0.000 4 |
| COMVSC | 0.239 5 | 0.025 2 | 0.456 4 | 0.134 6 |
| IBFDMVC | 0.005 2 | 0.000 5 | 0.052 4 | 0.085 2 |
| SIB-MSC | 0.009 4 | 0.232 7 | 0.000 3 | 0.253 4 |
| BGC-MVC | 0.004 2 | 0.000 3 | 0.000 3 | 0.000 2 |
表7 癌症数据集上的p值对比
Tab. 7 Comparison of p values on cancer datasets
| 算法 | Breast | Colon | GBM | Melanoma |
|---|---|---|---|---|
| EOMSC-CA | 0.467 7 | 0.362 3 | 0.014 3 | 0.007 3 |
| EMKMC | 0.563 2 | 0.627 6 | 0.283 6 | 0.025 2 |
| DUBGL | 0.015 4 | 0.254 2 | 0.193 5 | 0.179 3 |
| LMVSC | 0.025 6 | 0.042 5 | 0.028 3 | 0.284 2 |
| GMC | 0.014 5 | 0.266 7 | 0.156 8 | 0.000 4 |
| COMVSC | 0.239 5 | 0.025 2 | 0.456 4 | 0.134 6 |
| IBFDMVC | 0.005 2 | 0.000 5 | 0.052 4 | 0.085 2 |
| SIB-MSC | 0.009 4 | 0.232 7 | 0.000 3 | 0.253 4 |
| BGC-MVC | 0.004 2 | 0.000 3 | 0.000 3 | 0.000 2 |
| 数据集 | 算法 | 准确度 | F-score |
|---|---|---|---|
| 3sources | BGC-MVC | 0.826 3 | 0.833 8 |
| de-Ⅰ | 0.506 3 | ||
| de-Ⅱ | 0.546 3 | 0.627 9 | |
| de-Ⅲ | 0.636 7 | ||
| BBCsport | BGC-MVC | 0.704 8 | 0.793 5 |
| de-Ⅰ | 0.597 3 | ||
| de-Ⅱ | 0.625 4 | ||
| de-Ⅲ | 0.517 7 | 0.663 5 | |
| Cal7 | BGC-MVC | 0.735 9 | 0.823 3 |
| de-Ⅰ | 0.494 6 | ||
| de-Ⅱ | 0.513 4 | 0.652 6 | |
| de-Ⅲ | 0.684 8 | ||
| MSRC_v1 | BGC-MVC | 0.909 1 | |
| de-Ⅰ | 0.782 6 | 0.434 5 | |
| de-Ⅱ | 0.623 4 | 0.723 4 | |
| de-Ⅲ | 0.525 4 | ||
| Handwritten | BGC-MVC | 0.904 8 | 0.919 4 |
| de-Ⅰ | 0.802 5 | ||
| de-Ⅱ | 0.502 3 | ||
| de-Ⅲ | 0.638 3 | 0.591 3 |
表8 消融实验结果
Tab. 8 Ablation experimental results
| 数据集 | 算法 | 准确度 | F-score |
|---|---|---|---|
| 3sources | BGC-MVC | 0.826 3 | 0.833 8 |
| de-Ⅰ | 0.506 3 | ||
| de-Ⅱ | 0.546 3 | 0.627 9 | |
| de-Ⅲ | 0.636 7 | ||
| BBCsport | BGC-MVC | 0.704 8 | 0.793 5 |
| de-Ⅰ | 0.597 3 | ||
| de-Ⅱ | 0.625 4 | ||
| de-Ⅲ | 0.517 7 | 0.663 5 | |
| Cal7 | BGC-MVC | 0.735 9 | 0.823 3 |
| de-Ⅰ | 0.494 6 | ||
| de-Ⅱ | 0.513 4 | 0.652 6 | |
| de-Ⅲ | 0.684 8 | ||
| MSRC_v1 | BGC-MVC | 0.909 1 | |
| de-Ⅰ | 0.782 6 | 0.434 5 | |
| de-Ⅱ | 0.623 4 | 0.723 4 | |
| de-Ⅲ | 0.525 4 | ||
| Handwritten | BGC-MVC | 0.904 8 | 0.919 4 |
| de-Ⅰ | 0.802 5 | ||
| de-Ⅱ | 0.502 3 | ||
| de-Ⅲ | 0.638 3 | 0.591 3 |
| [1] | WALIA G S, SINGH T, SINGH K, et al. Robust multimodal biometric system based on optimal score level fusion model[J]. Expert Systems with Applications, 2019, 116: 364-376. |
| [2] | JAMES A. P, DASARATHY B V. Medical image fusion: a survey of the state of the art[J]. Information Fusion, 2014, 19: 4-19. |
| [3] | LIU J, RAHMANI H, AKHTAR N, et al. Learning human pose models from synthesized data for robust RGB-D action recognition[J]. International Journal of Computer Vision, 2019, 127(10): 1545-1564. |
| [4] | WU M, LING H, BI N, et al. Visual tracking with multiview trajectory prediction[J]. IEEE Transactions on Image Processing, 2020, 29: 8355-8367. |
| [5] | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
| [6] | ZHAN K, NIE F, WANG J, et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1261-1270. |
| [7] | LI X, ZHANG H, WANG R, et al. Multiview clustering: a scalable and parameter-free bipartite graph fusion method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 330-344. |
| [8] | ZHANG G Y, CHEN X W, ZHOU Y R, et al. Kernelized multi-view subspace clustering via auto-weighted graph learning[J]. Applied Intelligence, 2022, 52(1): 716-731. |
| [9] | GAO H, NIE F, LI X, et al. Multi-view subspace clustering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4238-4246. |
| [10] | XU J, REN Y, TANG H, et al. Self-supervised discriminative feature learning for deep multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7470-7482. |
| [11] | ZHAO J, LYU G, FENG S. Linear neighborhood reconstruction constrained latent subspace discovery for incomplete multi-view clustering[J]. Applied Intelligence, 2021, 52(1): 982-993. |
| [12] | ZHOU T, ZHANG C, PENG X, et al. Dual shared-specific multiview subspace clustering[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3517-3530. |
| [13] | KANG Z, PENG C, CHENG Q, et al. Unified spectral clustering with optimal graph[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3366-3373. |
| [14] | BRBIĆ M, KOPRIVA I. Multi-view low-rank sparse subspace clustering[J]. Pattern Recognition, 2018, 73: 247-258. |
| [15] | ZHAO X, EVANS N, DUGELAY J L. A subspace co-training framework for multi-view clustering[J]. Pattern Recognition Letters, 2014, 41: 73-82. |
| [16] | CHANG S, HU J, LI T, et al. Multi-view clustering via deep concept factorization[J]. Knowledge-Based Systems, 2021, 217: No.106807. |
| [17] | ZHENG Q, ZHANG Y, ZHU J, et al. Tensor-based intrinsic subspace representation learning for multi-view clustering[EB/OL]. [2024-10-21].. |
| [18] | LIANG Y, HUANG D, WANG C D. Consistency meets inconsistency: a unified graph learning framework for multi-view clustering[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 1204-1209. |
| [19] | ZHAO H, DING Z, FU Y. Multi-view clustering via deep matrix factorization[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2921-2927. |
| [20] | ZHAN K, ZHANG C, GUAN J, et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2887-2895. |
| [21] | WANG S, XIAO S, ZHU W, et al. Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding[J]. Information Sciences, 2022, 586: 224-238. |
| [22] | LI J, ZHOU G, QIU Y, et al. Deep graph regularized non-negative matrix factorization for multi-view clustering[J]. Neurocomputing, 2020, 390: 108-116. |
| [23] | WANG C, GENG L, ZHANG J, et al. Multi-view clustering via robust consistent graph learning[J]. Digital Signal Processing, 2022, 128: No.103607. |
| [24] | YIN Q, WU S, HE R, et al. Multi-view clustering via pairwise sparse subspace representation[J]. Neurocomputing, 2015, 156: 12-21. |
| [25] | HUANG S, KANG Z, TSANG I W, et al. Auto-weighted multi-view clustering via kernelized graph learning[J]. Pattern Recognition, 2019, 88: 174-184. |
| [26] | ZHANG C, FU H, WANG J, et al. Tensorized multi-view subspace representation learning[J]. International Journal of Computer Vision, 2020, 128(8/9): 2344-2361. |
| [27] | WANG S, LIU X, ZHU X, et al. Fast parameter-free multi-view subspace clustering with consensus anchor guidance[J]. IEEE Transactions on Image Processing, 2022, 31: 556-568. |
| [28] | ARTHUR D, VASSILVITSKII S. K-means++: the advantages of careful seeding[C]// Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: SIAM, 2007: 1027-1035. |
| [29] | 周乐,代婷婷,李淳,等.基于节点-属性二部图的网络表示学习模型[J].计算机应用,2022,42(8):2311-2318. |
| ZHOU L, DAI T T, LI C, et al. Network representation learning model based on node attribute bipartite graph[J]. Journal of Computer Applications, 2022, 42(8): 2311-2318. | |
| [30] | NIE F, WANG X, HUANG H. Clustering and projected clustering with adaptive neighbors[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 977-986. |
| [31] | 赵兴旺,王淑君,刘晓琳,等. 基于二部图的联合谱嵌入多视图聚类算法[J]. 软件学报, 2024, 35(9): 4408-4424. |
| ZHAO X W, WANG S J, LIU X L, et al. Joint spectral embedding multi-view clustering algorithm based on bipartite graphs[J]. Journal of Software, 2024, 35(9): 4408-4424. | |
| [32] | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116-1129. |
| [33] | DUAN Y, YUAN H, LAI C S, et al. Fusing local and global information for one-step multi-view subspace clustering[J]. Applied Sciences, 2022, 12(10): No.5094. |
| [34] | 杨在春,魏巍,岳琴,等. 稀疏表示一致性引导的多视图降维算法[J]. 小型微型计算机系统, 2023, 44(8): 1637-1643. |
| YANG Z C, WEI W, YUE Q, et al. Sparse representation consensus for multi-view dimensionality reduction[J]. Journal of Chinese Computer Systems, 2023, 44(8): 1637-1643. | |
| [35] | WINN J, JOJIC N. LOCUS: learning object classes with unsupervised segmentation[C]// Proceedings of the 10th IEEE International Conference on Computer Vision — Volume 1. Piscataway: IEEE, 2005: 756-763. |
| [36] | VON L U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. |
| [37] | LIU S, WANG S, ZHANG P, et al. Efficient one-pass multi-view subspace clustering with consensus anchors[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 7576-7584. |
| [38] | YANG B, ZHANG X, LI Z, et al. Efficient multi-view k-means clustering with multiple anchor graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 6887-6900. |
| [39] | KANG Z, ZHOU W, ZHAO Z, et al. Large-scale multi-view subspace clustering in linear time[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4412-4419. |
| [40] | ZHAO X, WANG S, LIU X, et al. Multi-view clustering via dynamic unified bipartite graph learning[J]. Pattern Recognition, 2024, 156: No.110715. |
| [41] | ZHANG P, LIU X, XIONG J, et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4676-4689. |
| [42] | HU J, YANG C, HUANG K, et al. Information bottleneck fusion for deep multi-view clustering[J]. Knowledge-Based Systems, 2024, 289: No.111551. |
| [43] | WANG S, LI C, LI Y, et al. Self-supervised information bottleneck for deep multi-view subspace clustering[J]. IEEE Transactions on Image Processing, 2023, 32: 1555-1567. |
| [1] | 张悦岚, 苏静, 赵航宇, 杨白利. 基于知识感知与交互的多视图蒸馏推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2211-2220. |
| [2] | 张翰林, 王俊陆, 宋宝燕. 融合衍生特征的时间序列事件分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 428-435. |
| [3] | 区卓越, 邓秀勤, 陈磊. 基于加权锚点的自适应多视图互补聚类算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 115-126. |
| [4] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
| [5] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
| [6] | 董瑶, 付怡雪, 董永峰, 史进, 陈晨. 不完整多视图聚类综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1673-1682. |
| [7] | 杨成昊, 胡节, 王红军, 彭博. 基于注意力机制的不完备多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3784-3789. |
| [8] | 朱云华, 孔兵, 周丽华, 陈红梅, 包崇明. 图对比学习引导的多视图聚类网络[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3267-3274. |
| [9] | 何子仪, 杨燕, 张熠玲. 深度融合多视图聚类网络[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2651-2656. |
| [10] | 劳景欢, 黄栋, 王昌栋, 赖剑煌. 基于视图互信息加权的多视图集成聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1713-1718. |
| [11] | 管娇娇, 钱雪忠, 周世兵, 姜凯彬, 宋威. 基于格拉斯曼流形子空间融合的多视图聚类[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3740-3749. |
| [12] | 董永峰, 屈向前, 李林昊, 董瑶. 基于作者偏好的学术投稿刊物推荐算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 50-56. |
| [13] | 李杏峰, 黄玉清, 任珍文, 李毅红. 基于自适应邻域的鲁棒多视图聚类算法[J]. 计算机应用, 2021, 41(4): 1093-1099. |
| [14] | 潘振君, 梁成, 张化祥. 基于一致图学习的鲁棒多视图子空间聚类[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3438-3446. |
| [15] | 盛俊, 李斌, 陈崚. 基于模块度和标签传递的推荐算法[J]. 计算机应用, 2020, 40(9): 2606-2612. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||