《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 444-452.DOI: 10.11772/j.issn.1001-9081.2024010064
• 数据科学与技术 • 上一篇
收稿日期:
2024-01-19
修回日期:
2024-03-25
接受日期:
2024-03-25
发布日期:
2024-05-09
出版日期:
2025-02-10
通讯作者:
马汉达
作者简介:
吴亚东(1999—),男,江苏苏州人,硕士研究生,主要研究方向:时间序列分析、空气质量预测。
基金资助:
Received:
2024-01-19
Revised:
2024-03-25
Accepted:
2024-03-25
Online:
2024-05-09
Published:
2025-02-10
Contact:
Handa MA
About author:
WU Yadong, born in 1999, M.S. candidate. His research interests include time series analysis, air quality prediction.
Supported by:
摘要:
在协同融合气象、空间和时间三大信息的时空混合模型中,时间变化建模通常在一维空间中完成。针对一维序列局限于滑动窗口和缺乏对多尺度特征的灵活提取的问题,提出一种多域时空层次图神经网络(MST-HGNN)模型。首先,构建城市全局尺度和站点局部尺度的两级层次图,从而进行空间关系学习;其次,将一维空气质量序列转换为一组基于多个周期的二维张量,并在二维空间上通过多尺度卷积进行周期解耦以捕获频域特征;同时,在一维空间中利用长短期记忆(LSTM)网络拟合时域特征;最后,为避免聚合冗余信息,设计一种门控机制融合模块用于频域和时域特征的多域特征融合。在Urban-Air数据集和长三角城市群数据集上的实验结果表明,相较于多视图多任务时空图卷积网络模型(M2),所提模型在预测第1 h、3 h、6 h、12 h空气质量的平均绝对误差(MAE)和均方根误差(RMSE)均低于对比模型。可见,MST-HGNN能在频域上解耦复杂时间模式,利用频域信息弥补时域特征建模的局限性,并结合时域信息更全面地预测空气质量变化。
中图分类号:
马汉达, 吴亚东. 多域时空层次图神经网络的空气质量预测[J]. 计算机应用, 2025, 45(2): 444-452.
Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction[J]. Journal of Computer Applications, 2025, 45(2): 444-452.
方向 | 向量 | 方向 | 向量 |
---|---|---|---|
北 | [0,1] | 西南 | [-1,-1] |
东北 | [1,1] | 西 | [-1,0] |
东 | [1,0] | 西北 | [-1,1] |
东南 | [1,-1] | 不稳定 | [0,0] |
南 | [0,-1] |
表1 风向编码规则
Tab. 1 Wind direction coding rules
方向 | 向量 | 方向 | 向量 |
---|---|---|---|
北 | [0,1] | 西南 | [-1,-1] |
东北 | [1,1] | 西 | [-1,0] |
东 | [1,0] | 西北 | [-1,1] |
东南 | [1,-1] | 不稳定 | [0,0] |
南 | [0,-1] |
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
GC-DCRNN | MAE | 8.55 | 16.80 | 22.77 | 27.23 |
RMSE | 11.51 | 22.86 | 30.77 | 36.52 | |
GC-LSTM | MAE | 9.05 | 17.05 | 22.76 | 26.97 |
RMSE | 12.08 | 22.94 | 30.54 | 36.09 | |
PM2.5-GNN | MAE | 8.15 | 13.91 | 18.09 | 23.14 |
RMSE | 11.49 | 20.17 | 25.15 | 31.01 | |
HighAir | MAE | 7.12 | 13.68 | 18.72 | 22.15 |
RMSE | 10.89 | 19.50 | 26.05 | 29.59 | |
MSTGNN | MAE | 7.14 | 12.93 | 17.46 | 21.75 |
RMSE | 10.98 | 18.23 | 24.27 | 28.49 | |
A3T-GCN | MAE | 6.65 | 11.69 | 16.90 | 20.47 |
RMSE | 9.97 | 17.61 | 22.87 | 27.94 | |
M2 | MAE | 6.14 | 12.04 | 16.65 | 20.18 |
RMSE | 9.90 | 17.93 | 22.81 | 27.72 | |
本文模型 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 |
表2 实验模型对比(长三角城市群数据集)
Tab. 2 Comparison of experimental models(Yangtze River Delta dataset)
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
GC-DCRNN | MAE | 8.55 | 16.80 | 22.77 | 27.23 |
RMSE | 11.51 | 22.86 | 30.77 | 36.52 | |
GC-LSTM | MAE | 9.05 | 17.05 | 22.76 | 26.97 |
RMSE | 12.08 | 22.94 | 30.54 | 36.09 | |
PM2.5-GNN | MAE | 8.15 | 13.91 | 18.09 | 23.14 |
RMSE | 11.49 | 20.17 | 25.15 | 31.01 | |
HighAir | MAE | 7.12 | 13.68 | 18.72 | 22.15 |
RMSE | 10.89 | 19.50 | 26.05 | 29.59 | |
MSTGNN | MAE | 7.14 | 12.93 | 17.46 | 21.75 |
RMSE | 10.98 | 18.23 | 24.27 | 28.49 | |
A3T-GCN | MAE | 6.65 | 11.69 | 16.90 | 20.47 |
RMSE | 9.97 | 17.61 | 22.87 | 27.94 | |
M2 | MAE | 6.14 | 12.04 | 16.65 | 20.18 |
RMSE | 9.90 | 17.93 | 22.81 | 27.72 | |
本文模型 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 |
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
本文模型 | MAE | 6.26 | 10.57 | 14.30 | 18.64 |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | |
w/o-F | MAE | 6.36 | 11.86 | 17.98 | 24.28 |
RMSE | 16.03 | 28.05 | 38.91 | 49.35 | |
w/o-T | MAE | 6.40 | 11.41 | 16.22 | 20.96 |
RMSE | 16.11 | 26.10 | 35.93 | 44.09 | |
w/o-G | MAE | 7.89 | 13.79 | 18.02 | 22.61 |
RMSE | 18.22 | 28.92 | 36.09 | 43.96 |
表3 变体模型对比(Urban-Air数据集)
Tab. 3 Comparison of variant models (Urban-Air dataset)
模型 | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|
本文模型 | MAE | 6.26 | 10.57 | 14.30 | 18.64 |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | |
w/o-F | MAE | 6.36 | 11.86 | 17.98 | 24.28 |
RMSE | 16.03 | 28.05 | 38.91 | 49.35 | |
w/o-T | MAE | 6.40 | 11.41 | 16.22 | 20.96 |
RMSE | 16.11 | 26.10 | 35.93 | 44.09 | |
w/o-G | MAE | 7.89 | 13.79 | 18.02 | 22.61 |
RMSE | 18.22 | 28.92 | 36.09 | 43.96 |
数据集 | k | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|---|
Urban-Air | 2 | MAE | 5.88 | 10.71 | 14.94 | 19.06 |
RMSE | 16.94 | 26.81 | 34.42 | 40.98 | ||
3 | MAE | 6.68 | 11.84 | 16.57 | 21.44 | |
RMSE | 16.82 | 28.26 | 37.22 | 43.96 | ||
5 | MAE | 6.26 | 10.57 | 14.30 | 18.64 | |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | ||
7 | MAE | 6.56 | 11.85 | 16.39 | 21.15 | |
RMSE | 17.34 | 27.78 | 35.96 | 40.50 | ||
12 | MAE | 7.08 | 12.59 | 16.67 | 20.82 | |
RMSE | 17.84 | 28.79 | 36.23 | 43.38 | ||
长三角 城市群 | 2 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 | ||
3 | MAE | 8.89 | 13.52 | 16.81 | 19.77 | |
RMSE | 14.94 | 19.49 | 22.98 | 26.33 | ||
5 | MAE | 6.14 | 12.04 | 16.65 | 20.18 | |
RMSE | 10.19 | 17.58 | 23.18 | 27.72 | ||
7 | MAE | 9.87 | 15.91 | 20.88 | 25.75 | |
RMSE | 17.32 | 23.85 | 29.62 | 35.95 | ||
12 | MAE | 9.69 | 12.94 | 15.81 | 18.77 | |
RMSE | 15.32 | 18.63 | 21.80 | 25.20 |
表4 不同周期下的预测效果
Tab. 4 Prediction performance under different periods
数据集 | k | 评价指标 | 1 h | 3 h | 6 h | 12 h |
---|---|---|---|---|---|---|
Urban-Air | 2 | MAE | 5.88 | 10.71 | 14.94 | 19.06 |
RMSE | 16.94 | 26.81 | 34.42 | 40.98 | ||
3 | MAE | 6.68 | 11.84 | 16.57 | 21.44 | |
RMSE | 16.82 | 28.26 | 37.22 | 43.96 | ||
5 | MAE | 6.26 | 10.57 | 14.30 | 18.64 | |
RMSE | 15.82 | 26.06 | 32.81 | 40.50 | ||
7 | MAE | 6.56 | 11.85 | 16.39 | 21.15 | |
RMSE | 17.34 | 27.78 | 35.96 | 40.50 | ||
12 | MAE | 7.08 | 12.59 | 16.67 | 20.82 | |
RMSE | 17.84 | 28.79 | 36.23 | 43.38 | ||
长三角 城市群 | 2 | MAE | 5.79 | 11.50 | 16.09 | 19.85 |
RMSE | 9.82 | 16.97 | 22.45 | 27.01 | ||
3 | MAE | 8.89 | 13.52 | 16.81 | 19.77 | |
RMSE | 14.94 | 19.49 | 22.98 | 26.33 | ||
5 | MAE | 6.14 | 12.04 | 16.65 | 20.18 | |
RMSE | 10.19 | 17.58 | 23.18 | 27.72 | ||
7 | MAE | 9.87 | 15.91 | 20.88 | 25.75 | |
RMSE | 17.32 | 23.85 | 29.62 | 35.95 | ||
12 | MAE | 9.69 | 12.94 | 15.81 | 18.77 | |
RMSE | 15.32 | 18.63 | 21.80 | 25.20 |
1 | HAN J, LIU H, XIONG H, et al. Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 5230-5243. |
2 | 石乾宏,杨燕,江永全,等. 面向空气质量预测的多粒度突变拟合网络[J]. 计算机应用, 2024, 44(8):2643-2650. |
SHI Q H, YANG Y, JIANG Y Q, et al. Multi-granularity abrupt change fitting network for air quality prediction[J]. Journal of Computer Applications, 2024, 44(8):2643-2650. | |
3 | WEN C, LIU S, YAO X, et al. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction[J]. Science of the Total Environment, 2019, 654: 1091-1099. |
4 | XU J, CHEN L, LV M, et al. HighAir: a hierarchical graph neural network based air quality forecasting method[EB/OL]. [2023-10-19].. |
5 | KIM T Y, CHO S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81. |
6 | ZHANG B, RONG Y, YONG R, et al. Deep learning for air pollutant concentration prediction: a review[J]. Atmospheric Environment, 2022, 290: No.119347. |
7 | QI Y, LI Q, KARIMIAN H, et al. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory[J]. Science of the Total Environment, 2019, 664: 1-10. |
8 | 哈尔滨工程大学. 基于元学习和图注意力时空神经网络的空气质量预测方法: 202011155619.1[P]. 2021-01-29. |
Harbin Engineering University. Air quality prediction method based on meta learning and graph attention spatiotemporal neural network: 202011155619.1[P]. 2021-01-29. | |
9 | SUI S, HAN Q. Multi-view multi-task spatiotemporal graph convolutional network for air quality prediction[J]. Science of the Total Environment, 2023, 893: No.164699. |
10 | YAN R, LIAO J, YANG J, et al. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering[J]. Expert Systems with Applications, 2021, 169: No.114513. |
11 | WANG J, SONG G. A deep spatial-temporal ensemble model for air quality prediction[J]. Neurocomputing, 2018, 314: 198-206. |
12 | WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[EB/OL]. [2023-10-19].. |
13 | LIU H, YAN G, DUAN Z, et al. Intelligent modeling strategies for forecasting air quality time series: a review[J]. Applied Soft Computing, 2021, 102: No.106957. |
14 | KITAGAWA Y K L, PEDRUZZI R, GALVÃO E S, et al. Source apportionment modelling of PM2.5 using CMAQ-ISAM over a tropical coastal-urban area[J]. Atmospheric Pollution Research, 2021, 12(12): No.101250. |
15 | LI Y, GUO J E, SUN S, et al. Air quality forecasting with artificial intelligence techniques: a scientometric and content analysis[J]. Environmental Modelling and Software, 2022, 149: No.105329. |
16 | ZHANG L, LIN J, QIU R, et al. Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model[J]. Ecological Indicators, 2018, 95(Pt 1): 702-710. |
17 | MA Z, HU X, HUANG L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science and Technology, 2014, 48(13): 7436-7444. |
18 | 任才溶,谢刚. 基于随机森林和气象参数的PM2.5浓度等级预测[J]. 计算机工程与应用, 2019, 55(2): 213-220. |
REN C R, XIE G. Prediction of PM2.5 concentration level based on random forest and meteorological parameters[J]. Computer Engineering and Applications, 2019, 55(2): 213-220. | |
19 | HE Z, LIU P, ZHAO X, et al. Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019: a study based on multiple linear regression and WRF-Chem[J]. Science of the Total Environment, 2022, 807(Pt 2): No.150792. |
20 | PAK U, MA J, RYU U, et al. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: a case study of Beijing, China[J]. Science of the Total Environment, 2020, 699: No.133561. |
21 | ZHU J, DENG F, ZHAO J, et al. Attention-based Parallel Networks (APNet) for PM2.5 spatiotemporal prediction[J]. Science of the Total Environment, 2021, 769: No.145082. |
22 | ZHANG B, ZOU G, QIN D, et al. RCL-Learning: ResNet and convolutional long short-term memory-based spatio-temporal air pollutant concentration prediction model[J]. Expert Systems with Applications, 2022, 207: No.118017. |
23 | ZHANG J, WANG Z, LIU Y, et al. Temporal attention with domain-specific graph regularization for PM2.5 forecasting[C]// Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering. Piscataway: IEEE, 2020: 510-517. |
24 | XU J, WANG S, YING N, et al. Dynamic graph neural network with adaptive edge attributes for air quality prediction: a case study in China[J]. Heliyon, 2023, 9(7): No.e17746. |
25 | LIN Y, MAGO N, GAO Y, et al. Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 359-368. |
26 | WANG S, LI Y, ZHANG J, et al. PM2.5-GNN: a domain knowledge enhanced graph neural network for PM2.5 forecasting[C]// Proceedings of the 28th International Conference on Advances in Geographic Information Systems. New York: ACM, 2020:163-166. |
27 | 廖海斌,袁理,龚颢巍. 基于多尺度时空图神经网络的污染物浓度预测[J]. 控制与决策, 2024, 39(4):1396-1402. |
LIAO H B, YUAN L, GONG H W. Pollutant concentration forecast based on multiscale spatiotemporal graph neural network[J]. Control and Decision, 2024, 39(4):1396-1402. | |
28 | ISKANDARYAN D, RAMOS F, TRILLES S. Graph neural network for air quality prediction: a case study in Madrid[J]. IEEE Access, 2023, 11: 2729-2742. |
29 | CHEN J, YUAN C, DONG S, et al. A novel spatiotemporal multigraph convolutional network for air pollution prediction[J]. Applied Intelligence, 2023, 53(15): 18319-18332. |
[1] | 蔡启健, 谭伟. 语义图增强的多模态推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 421-427. |
[2] | 余肖生, 王智鑫. 基于多层次图对比学习的序列推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 106-114. |
[3] | 程子栋, 李鹏, 朱枫. 物联网威胁情报知识图谱中潜在关系的挖掘[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 24-31. |
[4] | 赵文博, 马紫彤, 杨哲. 基于有向超图自适应卷积的链接预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 15-23. |
[5] | 杨兴耀, 陈羽, 于炯, 张祖莲, 陈嘉颖, 王东晓. 结合自我特征和对比学习的推荐模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2704-2710. |
[6] | 杨鑫, 陈雪妮, 吴春江, 周世杰. 结合变种残差模型和Transformer的城市公路短时交通流预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2947-2951. |
[7] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[8] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[9] | 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2726-2731. |
[10] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[11] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[12] | 杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492. |
[13] | 刘瑞华, 郝子赫, 邹洋杨. 基于多层级精细特征融合的步态识别算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2250-2257. |
[14] | 林欣蕊, 王晓菲, 朱焱. 基于局部扩展社区发现的学术异常引用群体检测[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1855-1861. |
[15] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||