| 1 | 甘海涛. 半监督聚类与分类算法研究[D]. 武汉:华中科技大学, 2014: 5-7. | 
																													
																						|  | GAN H T. Research on semi-supervised clustering and classification algorithm [D]. Wuhan: Huazhong University of Science and Technology, 2014: 5-7. | 
																													
																						| 2 | 王卫东. 基于自监督学习和深度关系网络的SAR图像变化检测[D]. 西安: 西安电子科技大学, 2021:8-10. | 
																													
																						|  | WANG W D. SAR image change detection based on self-supervised learning and deep relation network [D]. Xi’an: Xidian University, 2021: 8-10. | 
																													
																						| 3 | 彭超. 基于自监督学习和迁移学习的CT图像肺结节分类研究[D]. 重庆:重庆大学, 2021:14-15. | 
																													
																						|  | PENG C. Research on lung nodule classification in CT image based on self-supervised learning and transfer learning [D]. Chongqing: Chongqing University, 2021:14-15. | 
																													
																						| 4 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. | 
																													
																						|  | ZHOU Z H. Machine learning [M]. Beijing: Tsinghua University Press, 2016. | 
																													
																						| 5 | LIU X, ZHANG F, HOU Z, et al. Self-supervised learning: generative or contrastive [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876. | 
																													
																						| 6 | JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning [J]. Technologies, 2020, 9(1): No.2. | 
																													
																						| 7 | 张春昊, 解滨,张喜梅,等. 一种结合自适应近邻与密度峰值的加权模糊聚类算法[J]. 小型微型计算机系统, 2023, 44(9): 1974-1982. | 
																													
																						|  | ZHANG C H, XIE B, ZHANG X M, et al. Weighted fuzzy clustering algorithm combining adaptive nearest neighbors and density peaks [J]. Journal of Chinese Computer Systems, 2023, 44(9): 1974-1982. | 
																													
																						| 8 | NOROOZI M, VINJIMOOR A, FAVARO P, et al. Boosting self-supervised learning via knowledge transfer [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9359-9367. | 
																													
																						| 9 | WU L, LIN H, TAN C, et al. Self-supervised learning on graphs: contrastive, generative, or predictive [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4216-4235. | 
																													
																						| 10 | JI J, WANG J, HUANG C, et al. Spatio-temporal self-supervised learning for traffic flow prediction [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 4356-4364. | 
																													
																						| 11 | RANI V, NABI S T, KUMAR M, et al. Self-supervised learning: a succinct review [J]. Archives of Computational Methods in Engineering, 2023, 30(4): 2761-2775. | 
																													
																						| 12 | DENIZE J, RABARISOA J, ORCESI A, et al. Similarity contrastive estimation for self-supervised soft contrastive learning[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 2705-2715. | 
																													
																						| 13 | SHWARTZ ZIV R, LeCUN Y. To compress or not to compress self-supervised learning and information theory: a review [J]. Entropy, 2024, 26(3): No.252. | 
																													
																						| 14 | 代雨柔. 基于自监督学习的用户轨迹分析[D]. 成都:电子科技大学, 2022: 20. | 
																													
																						|  | DAI Y R. Human trajectory analysis based on self-supervised learning [D]. Chengdu: University of Electronic Science and Technology of China, 2022: 20. | 
																													
																						| 15 | ARIK S Ö, PFISTER T. TabNet: attentive interpretable tabular learning [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 6679-6687. | 
																													
																						| 16 | UÇAR T, HAJIRAMEZANALI E, EDWARDS L. SubTab: subsetting features of tabular data for self-supervised representation learning [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 18853-18865. | 
																													
																						| 17 | DUA D, GRAFF C. The UCI machine learning repository [DB/OL]. [2023-08-13]. . | 
																													
																						| 18 | HU H, LIU J, ZHANG X, et al. An effective and adaptable K-means algorithm for big data cluster analysis [J]. Pattern Recognition, 2023, 139: No.109404. | 
																													
																						| 19 | DENG D. DBSCAN clustering algorithm based on density [C]// Proceedings of the 7th International Forum on Electrical Engineering and Automation. Piscataway: IEEE, 2020: 949-953. | 
																													
																						| 20 | LI W, WANG Z, SUN W, et al. An ensemble clustering framework based on hierarchical clustering ensemble selection and clusters clustering [J]. Cybernetics and Systems, 2023, 54(5): 741-766. | 
																													
																						| 21 | ZHAO Z, RUI Z, DUAN X. Feature selection for binary classification based on class labeling, SOM, and hierarchical clustering [J]. Measurement and Control, 2023, 56(9/10): 1649-1669. | 
																													
																						| 22 | SINAGA T H, WANTO A, GUNAWAN I, et al. Implementation of data mining using C4.5 algorithm on customer satisfaction in Tirta Lihou PDAM [J]. Journal of Computer Networks, Architecture and High Performance Computing, 2021, 3(1): 9-20. | 
																													
																						| 23 | UDDIN S, HAQUE I, LU H, et al. Comparative performance analysis of K-Nearest Neighbour (KNN) algorithm and its different variants for disease prediction [J]. Scientific Reports, 2022, 12: No.6256. | 
																													
																						| 24 | AL-JARRAH R, AL-OQLA F M. A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing [J]. Composite Structures, 2022, 289: No.115475. | 
																													
																						| 25 | WANG H, LI G, WANG Z. Fast SVM classifier for large-scale classification problems [J]. Information Sciences, 2023, 642: No.119136. |