| 1 | 严浙平,曲思瑜,邢文.水下图像增强方法研究综述[J].智能系统学报,2022,17(5):860-873. | 
																													
																						|  | YAN Z P, QU S Y, XING W. An overview of underwater image enhancement methods[J]. CAAI Transactions on Intelligent Systems,2022, 17(5): 860-873. | 
																													
																						| 2 | DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199. | 
																													
																						| 3 | 张婷,赵杏,陈文欣. 基于条件生成对抗网络的图像去雾方法[J]. 计算机应用,2021,41(S2):248-253. | 
																													
																						|  | ZHANG T, ZHAO X, CHEN W X. Image dehazing method based on conditional generative adversarial network[J]. Journal of Computer Applications, 2021, 41(S2): 248-253. | 
																													
																						| 4 | DOSOVISKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. [2021-06-03]. . | 
																													
																						| 5 | WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement [C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 1382-1386. | 
																													
																						| 6 | ZHENG M, LUO W. Underwater image enhancement using improved CNN based defogging[J]. Electronics, 2022, 11(1): Article No. 150. | 
																													
																						| 7 | TANG Z, LI J, HUANG J, et al. Multi-scale convolution underwater image restoration network[J]. Machine Vision and Applications, 2022, 33(6): Article No. 85. | 
																													
																						| 8 | LI J, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394. | 
																													
																						| 9 | FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 7159-7165. | 
																													
																						| 10 | WANG N, ZHOU Y, HAN F, et al. UWGAN: underwater GAN for real-world underwater color restoration and dehazing [EB/OL]. [2021-03-26]. . | 
																													
																						| 11 | CONG R, YANG W, ZHANG W, et al. PUGAN: physical model-guided underwater image enhancement using GAN with dual-discriminators[J]. IEEE Transactions on Image Processing, 2023, 32: 4472-4485. | 
																													
																						| 12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. | 
																													
																						| 13 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. | 
																													
																						| 14 | PENG L, ZHU C, BIAN L. U-Shape Transformer for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2023, 32: 3066-3079. | 
																													
																						| 15 | CHENG N, SUN Z, ZHU X, et al. A transformer-based network for perceptual contrastive underwater image enhancement[J]. Signal Processing: Image Communication, 2023, 118: Article No. 117032. | 
																													
																						| 16 | FAN C M, LIU T J, LIU K H. SUNet: Swin Transformer UNet for image denoising[C]// Proceedings of the 2022 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2022: 2333-2337. | 
																													
																						| 17 | YOU D, GAO X, KATAYAMA S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 628-636. | 
																													
																						| 18 | MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. | 
																													
																						| 19 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. | 
																													
																						| 20 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. | 
																													
																						| 21 | SEIF G, ANDROUTSOS D. Edge-based loss function for single image super-resolution[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 1468-1472. | 
																													
																						| 22 | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers — Volume 2. Piscataway: IEEE, 2003: 1398-1402. | 
																													
																						| 23 | ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. | 
																													
																						| 24 | ISLAM M J, LUO P, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception [EB/OL]. [2024-10-14]. . | 
																													
																						| 25 | ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. | 
																													
																						| 26 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. | 
																													
																						| 27 | PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551. | 
																													
																						| 28 | YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. | 
																													
																						| 29 | LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: No. 107038. | 
																													
																						| 30 | REN T, XU H, JIANG G, et al. Reinforced Swin-Convs Transformer for simultaneous underwater sensing scene image enhancement and super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.4209616. |