1 |
严浙平,曲思瑜,邢文.水下图像增强方法研究综述[J].智能系统学报,2022,17(5):860-873.
|
|
YAN Z P, QU S Y, XING W. An overview of underwater image enhancement methods[J]. CAAI Transactions on Intelligent Systems,2022, 17(5): 860-873.
|
2 |
DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199.
|
3 |
张婷,赵杏,陈文欣. 基于条件生成对抗网络的图像去雾方法[J]. 计算机应用,2021,41(S2):248-253.
|
|
ZHANG T, ZHAO X, CHEN W X. Image dehazing method based on conditional generative adversarial network[J]. Journal of Computer Applications, 2021, 41(S2): 248-253.
|
4 |
DOSOVISKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. [2021-06-03]. .
|
5 |
WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement [C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 1382-1386.
|
6 |
ZHENG M, LUO W. Underwater image enhancement using improved CNN based defogging[J]. Electronics, 2022, 11(1): Article No. 150.
|
7 |
TANG Z, LI J, HUANG J, et al. Multi-scale convolution underwater image restoration network[J]. Machine Vision and Applications, 2022, 33(6): Article No. 85.
|
8 |
LI J, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394.
|
9 |
FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 7159-7165.
|
10 |
WANG N, ZHOU Y, HAN F, et al. UWGAN: underwater GAN for real-world underwater color restoration and dehazing [EB/OL]. [2021-03-26]. .
|
11 |
CONG R, YANG W, ZHANG W, et al. PUGAN: physical model-guided underwater image enhancement using GAN with dual-discriminators[J]. IEEE Transactions on Image Processing, 2023, 32: 4472-4485.
|
12 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
13 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
|
14 |
PENG L, ZHU C, BIAN L. U-Shape Transformer for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2023, 32: 3066-3079.
|
15 |
CHENG N, SUN Z, ZHU X, et al. A transformer-based network for perceptual contrastive underwater image enhancement[J]. Signal Processing: Image Communication, 2023, 118: Article No. 117032.
|
16 |
FAN C M, LIU T J, LIU K H. SUNet: Swin Transformer UNet for image denoising[C]// Proceedings of the 2022 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2022: 2333-2337.
|
17 |
YOU D, GAO X, KATAYAMA S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 628-636.
|
18 |
MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821.
|
19 |
LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843.
|
20 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
21 |
SEIF G, ANDROUTSOS D. Edge-based loss function for single image super-resolution[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 1468-1472.
|
22 |
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers — Volume 2. Piscataway: IEEE, 2003: 1398-1402.
|
23 |
ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57.
|
24 |
ISLAM M J, LUO P, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception [EB/OL]. [2024-10-14]. .
|
25 |
ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234.
|
26 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
|
27 |
PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551.
|
28 |
YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071.
|
29 |
LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: No. 107038.
|
30 |
REN T, XU H, JIANG G, et al. Reinforced Swin-Convs Transformer for simultaneous underwater sensing scene image enhancement and super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.4209616.
|