[1] |
PLATE H, PONTA S E, SABETTA A. Impact assessment for vulnerabilities in open-source software libraries [C]// Proceedings of the 2015 IEEE International Conference on Software Maintenance and Evolution. Piscataway IEEE, 2015: 411-420.
|
[2] |
CROFT R, BABAR M A, KHOLOOSI M M. Data quality for software vulnerability datasets [C]// Proceedings of the IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 121-133.
|
[3] |
CAO X, WANG J, WU P, et al. VulMPFF: a vulnerability detection method for fusing code features in multiple perspectives [J]. IET Information Security, 2024, 2024: No.4313185.
|
[4] |
胡雨涛,王溯远,吴月明,等.基于图神经网络的切片级漏洞检测及解释方法[J].软件学报,2023, 34(6): 2543-2561.
|
|
HU Y T, WANG S Y, WU Y M, et al. Slice-level vulnerability detection and interpretation method based on graph neural network [J]. Journal of Software, 2023, 34(6): 2543-2561.
|
[5] |
YAMAGUCHI F, GOLDE N, ARP D, et al. Modeling and discovering vulnerabilities with code property graphs [C]// Proceedings of the 2014 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2014: 590-604.
|
[6] |
FENG Z, GUO D, TANG D, et al. CodeBERT: a pre-trained model for programming and natural languages [C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 1536-1547.
|
[7] |
FAN J, LI Y, WANG S, et al. A C/C++ code vulnerability dataset with code changes and CVE summaries [C]// Proceedings of the IEEE/ACM 17th International Conference on Mining Software Repositories. New York: ACM, 2020: 508-512.
|
[8] |
SAMATE. NIST Software assurance reference dataset [DS/OL]. [2024-06-12]. .
|
[9] |
HIN D, KAN A, CHEN H, et al. LineVD: statement-level vulnerability detection using graph neural networks [C]// Proceedings of the 19th International Conference on Mining Software Repositories. New York: ACM, 2022: 596-607.
|
[10] |
QIU F, LIU Z, HU X, et al. Vulnerability detection via multiple-graph-based code representation [J]. IEEE Transactions on Software Engineering, 2024, 50(8): 2178-2199.
|
[11] |
LI Z, ZOU D, XU S. VulDeePecker: a deep learning-based system for vulnerability detection [C]// Proceedings of the 2018 Network and Distributed Systems Security Symposium. Reston, VA: Internet Society, 2018: 1-15.
|
[12] |
ZOU D, WANG S, XU S, et al. μVulDeePecker: a deep learning-based system for multiclass vulnerability detection [J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2224-2236.
|
[13] |
DAM H K, TRAN T, PHAM T, et al. Automatic feature learning for predicting vulnerable software components [J]. IEEE Transactions on Software Engineering, 2021, 47(1): 67-85.
|
[14] |
LI X, XIN Y, ZHU H, et al. Cross-domain vulnerability detection using graph embedding and domain adaptation [J]. Computers and Security, 2023, 125: No.103017.
|
[15] |
CHENG X, WANG H, HUA J, et al. DeepWukong: statically detecting software vulnerabilities using deep graph neural network [J]. ACM Transactions on Software Engineering and Methodology, 2021, 30(3): No.38.
|
[16] |
Ltd Checkmarx. Checkmarx [EB/OL]. [2024-03-19]. .
|
[17] |
WHEELER D A. Flawfinder [EB/OL]. [2024-02-20]. .
|
[18] |
Secure Software Inc. Rough Audit Tool For Security (RATS) [EB/OL]. [2024-03-19]. .
|
[19] |
FU M, TANTITHAMTHAVORN C. LineVul: a Transformer-based line-level vulnerability prediction [C]// Proceedings of the 19th International Conference on Mining Software Repositories. New York: ACM, 2022: 608-620.
|
[20] |
PORNPRASIT C, TANTITHAMTHAVORN C K. DeepLineDP: towards a deep learning approach for line-level defect prediction [J]. IEEE Transactions on Software Engineering, 2023, 49(1): 84-98.
|
[21] |
DUAN X, WU J Z, JI S, et al. VulSniper: focus your attention to shoot fine-grained vulnerabilities [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 4665-4671.
|
[22] |
DOYLE M, WALDEN J. An empirical study of the evolution of PHP Web application security [C]// Proceedings of the 3rd International Workshop on Security Measurements and Metrics. Piscataway: IEEE, 2011: 11-20.
|
[23] |
McCABE T J. A complexity measure [J]. IEEE Transactions on Software Engineering, 1976, SE-2(4): 308-320.
|
[24] |
NAGAPPAN N, BALL T. Use of relative code churn measures to predict system defect density [C]// Proceedings of the 27th International Conference on Software Engineering. New York: ACM, 2005: 284-292.
|