计算机应用 ›› 2014, Vol. 34 ›› Issue (9): 2668-2672.DOI: 10.11772/j.issn.1001-9081.2014.09.2668
吕煊1,刘玉淑2,丁洪富1,李爱迪1
收稿日期:
2014-03-11
修回日期:
2014-05-09
发布日期:
2014-09-30
出版日期:
2014-09-01
通讯作者:
吕煊
作者简介:
基金资助:
国土资源部公益性项目
LYV Xuan1,LIU Yushu2,DING Hongfu1,LI Aidi1
Received:
2014-03-11
Revised:
2014-05-09
Online:
2014-09-30
Published:
2014-09-01
Contact:
LYV Xuan
摘要:
字典模型(BOW)是一种经典的图像描述方法,模型中特征字典的构造方法至关重要。针对特征字典构造问题,提出了一种类别约束下的低秩优化特征字典构造方法LRC-DT,通过低秩优化的方法使训练出来的特征字典在描述同类图像时表示系数矩阵的秩相对较低,从而将类别信息引入到字典学习中,提高字典对图像描述的可分辨性。在标准公测库Caltech-101和Caltech-256上的实验结果表明:将SPM、稀疏编码下的SPM(ScSPM)、局部线性编码(LLC)和线性核函数的SPM(LSPM)编码方法中的特征字典替换为加入低秩约束(LRC)的特征字典后,随着训练样本数目增多,字典模型的分类准确率与未引入低秩约束的方法相比有所提高。
中图分类号:
吕煊 刘玉淑 丁洪富 李爱迪. 类别约束下的低秩优化特征字典构造方法[J]. 计算机应用, 2014, 34(9): 2668-2672.
LYV Xuan LIU Yushu DING Hongfu LI Aidi. Low-rank optimization characteristic dictionary training approach with category constraint[J]. Journal of Computer Applications, 2014, 34(9): 2668-2672.
[1]JEGOU H, DOUZE M, SCHIMID C. Packing bag-of-features [C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 2357-2364.
[2]PEYRE G. A review of adaptive image representations [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 896-911.
[3]PHILBIN J, CHUM O, ISARD M, et al.Object retrieval with large vocabularies and fast spatial matching [C]// Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2007: 1-8.
[4]CHUM O, PHILBIN J, SIVIC J, et al.Total recall: automatic query expansion with a generative feature model for object retrieval [C]// Proceedings of the IEEE 11th International Conference on Computer Vision. Piscataway: IEEE, 2007: 1-8.
[5]LI F F, PERONA P. A Bayesian hierarchical model for learning natural scene categories[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005, 2: 524-531.
[6]DENG C, CAO H. Construction of multiscale ridgelet dictionary and its application for image coding [J]. Journal of Image and Graphics, 2009, 14(7): 1273-1278. (邓承志,曹汉强.多尺度脊波字典的构造及其在图像编码中的应用[J].中国图象图形学报,2009,14(7):1273-1278.)
[7]SUN Y, WEI Z, XIAO L, et al.Multimorphology sparsity regularized image super-resolution [J]. Acta Electronica Sinica, 2010, 38(12): 2898-2903. (孙玉宝,韦志辉,肖亮,等.多形态稀疏性正则化的图像超分辨率算法[J].电子学报, 2010, 38(12): 2898-2903.)
[8]AHARON M, ELAD M, BRUCKSTEIN A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[9]CSRUKA G, DANCE C R, FAN L, et al.Visual categorization with bags of keypoints [C]// ECCV 2004: Proceedings of the 8th European Conference on Computer Vision, LNCS 3024. Berlin: Springer-Verlag, 2004: 1-22.
[10]CSURKA G, DANCE C R, PERRONNIN F, et al.Generic visual categorization using weak geometry [C]// Toward Category-Level Object Recognition, LNCS 4170. Berlin: Springer-Verlag, 2006: 207-224.
[11]LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006, 2: 2169-2176.
[12]ZHANG J, MARSZALEK M, LAZEBNIK S, et al.Local features and kernels for classification of texture and object categories: a comprehensive study [J]. International Journal of Computer Vision, 2007, 73(2): 213-238.
[13]SIVIC J, ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]// Proceedings of the 9th IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2002: 1470-1477.
[14]BOIMAN O, SHECHTMAN E, IRANI M. In defense of nearest-neighbor based image classification [C]// Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008: 1-8.
[15]LI F F, FERGUS R, PERONA P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories [J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70.
[16]BOSCH A, ZISSERMAN A, MUNOZ X. Scene classification using a hybrid generative/ dicriminative approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-727.
[17]LIU Y, JIN R, SUKTHANKAR R, et al.Unifying discriminative visual codebook generation with classifier training for object category recognition [C]// Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008: 1-8.
[18]JURIE F, TRIGGS B. Creating efficient codebooks for visual recognition [C]// ICCV 2005: Proceedings of the 2005 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005, 1: 604-610.
[19]BURGHOUTS G J, SCHUTTE K. Spatio-temporal layout of human actions for improved bag-of-words action detection [J]. Pattern Recognition Letters, 2013, 34(15): 1861-1869.
[20]BANERJI S, SINHA A, LIU C. A new Bag of Words LBP (BoWL) descriptor for scene image classification[C]// CAIP 2013: Proceedings of the 15th International Conference on Computer Analysis of Images and Patterns, LNCS 8047. Berlin: Springer-Verlag, 2013: 490-497.
[21]YANG J, YU K, GONG Y, et al.Linear spatial pyramid matching using sparse coding for image classification [C]// Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1794-1801.
[22]WANG J, YANG J, YU K, et al.Locality-constrained linear coding for image classification [C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2010: 3360-3367.
[23]RUBINSTEIN, R, PELEG T, et al.Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model [J]. IEEE Transactions on Signal Processing, 2013, 61(3): 661-677.
[24]JIANG Z, LIN Z, DAVIS L S. Label consistent K-SVD: learning a discriminative dictionary for recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651-2664.
[25]ZHANG Z, GANESH A, LIANG X, et al.TILT: transform invariant low-rank textures [J]. International Journal of Computer Vision, 2012, 99(1): 1-24.
[26]LIU G, LIN Z, YAN C, et al.Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[27]ZHANG N, YANG J. Low-rank representation based discriminative projection for robust feature extraction [J]. Neurocomputing, 2013, 111: 13-20.
[28]SHALIT U, WEINSHALL D, CHECHIK G. Online learning in the embedded manifold of low-rank matrices [J]. Journal of Machine Learning Research, 2012, 13(1): 429-458.
[29]LIU Y, JIAO L C, SHANG F, et al.An efficient matrix bi-factorization alternative optimization method for low-rank matrix recovery and completion [J]. Neural Networks, 2013, 48: 8-18.
[30]ZHANG X, SUN F, LIU G, et al.Fast low-rank subspace segmentation [J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(5): 1293-1297.
[31]YANG J, YIN W T, ZHANG Y, et al.A fast algorithm for edge preserving variational multichannel image restoration [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 569-592.
[32]BOIMAN O, SHECHTMAN E, IRANI M. In defense of nearest-neighbor based image classification [C]// CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[33]SHOTTON J, WINN J, ROTHER C, et al.Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling appearance, shape and context [J]. International Journal of Computer Vision, 2009, 81(1): 2-23.
[34]ZHANG H, BERG A C, MAIRE M, et al.SVM-KNN: discriminative nearest heighbor classification for visual category recognition [C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006, 2: 2126-2136.
[35]GRIFFIN G, HOLUB A, PERONA P. Caltech-256 object category dataset, TR 7694 [R]. Pasadena: California Institute of Technology, 2007.
|
[1] | 张佳慧 李晓明 张嘉祥. 强化形态感知的路面缺陷检测算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[2] | 杨建锋 陈斌 李雨轩. 基于点云重构的自监督点云异常检测方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[3] | 薛振华 李强 黄超. 视觉大模型驱动的像素级图像异常检测模型[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[4] | 蒋畅江 向杰 何旭颖. 面向机械臂抓取的双目视觉目标定位算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[5] | 边小勇 胡其仁 袁培洋. 多注意力对比学习的红外小目标检测[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[6] | 李钟华 钟庚辛 范萍 朱恒亮. 通过边界挖掘和背景引导的伪装目标检测[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[7] | 吴松霖 张广朝 姚远 彭博. 基于判别区域引导的多视图困难气道识别[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[8] | 李强 白少雄 熊源 袁薇. 基于视觉大模型隐私保护的监控图像定位[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[9] | 薛雅丽 徐忠敏 刘世豪. 基于多级小波残差网络的重力数据去噪方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[10] | 况世雄 姚俊波 陆佳炜 王琪冰 肖刚. 基于动态图卷积网络的电梯乘客异常行为数据增强方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[11] | 康斌 陈斌 王俊杰 李昱林 赵军智 咸伟志. 基于多粒度共享语义中心关联的文本到人物检索方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[12] | 张庆 杨凡 方宇涵. 基于多模态信息融合的中文拼写纠错算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[13] | 王昊 王金伟 程鑫 张家伟 吴昊 罗向阳 马宾. 彩色图像JPEG重压缩取证综述[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[14] | 王磊 胡节 彭博. 用于半监督火灾检测的分布自适应和动态课程伪标签框架[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[15] | 刘晋文 王磊 马博 董瑞 杨雅婷 艾合塔木江·艾合麦提 王欣乐. 基于弱监督模态语义增强的多模态有害信息检测方法 [J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||