计算机应用 ›› 2017, Vol. 37 ›› Issue (8): 2368-2373.DOI: 10.11772/j.issn.1001-9081.2017.08.2368

• 数据科学与技术 • 上一篇    下一篇

基于异构星型网络分析的药物推荐改进算法HIC-MedRank

邹林霖1, 李学明1,2, 李雪3, 袁洪4, 刘星4   

  1. 1. 重庆大学 计算机学院, 重庆 400044;
    2. 重庆大学 信息物理社会可信服务计算教育部重点实验室, 重庆 400044;
    3. 昆士兰大学 信息技术与电子工程学院, 澳大利亚 布里斯班 4072;
    4. 中南大学 湘雅三医院心内科, 长沙 410013
  • 收稿日期:2017-02-10 修回日期:2017-03-15 出版日期:2017-08-10 发布日期:2017-08-12
  • 作者简介:邹林霖(1990-),女,四川内江人,硕士研究生,主要研究方向:机器学习、数据挖掘;李学明(1967-),男,重庆人,教授,博士,主要研究方向:数据挖掘、大数据、高性能计算;李雪(1956-),男,重庆人,教授,博士,主要研究方向:数据挖掘、社会计算、智能信息系统;袁洪(1957-),男,湖南长沙人,主任医师,教授,博士,主要研究方向:高血压个体化治疗、临床心血管药理;刘星(1989-),女,湖南长沙人,医师,博士研究生,主要研究方向:高血压大数据。
  • 基金资助:
    国家863计划项目(2015AA015308);国家自然科学基金资助项目(81273594);国家科技重大专项(2012ZX09303014001)。

HIC-MedRank:improved drug recommendation algorithm based on heterogeneous information network

ZOU Linlin1, LI Xueming[Author]) AND 1[Journal]) AND year[Order])" target="_blank">LI Xueming1,2, LI Xue3, YUAN Hong4, LIU Xing4   

  1. 1. College of Computer Science, Chongqing University, Chongqing 400044, China;
    2. Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing University, Chongqing 400044, China;
    3. School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia;
    4. Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha Hunan 410013, China
  • Received:2017-02-10 Revised:2017-03-15 Online:2017-08-10 Published:2017-08-12
  • Supported by:
    This work is partially supported by the National High Technology Research and Development Program (863 Program) of China (2015AA015308),the National Science Foundation of China (81273594),the National Science and Technology Major Project (2012ZX09303014001).

摘要: 伴随着医疗文献数据库的快速增长,缺乏经验的初级医师在为患者开处方时难以阅读大量的医疗文献来获得科学的决策辅助。2013年提出的MedRank算法从Medline数据库中提取医学信息异构星型网络,基于"有疗效的药物是由好的文章提及的,好的文章是由优秀的作者写的并刊登在高水平的期刊上"的假设,旨在为各类疾病的患者推荐最具有疗效的药物。该算法仍然存在几个问题:1)模型输入的疾病不是独立的疾病;2)推荐的结果不是具体的药物;3)没有考虑文章的发表时间等其他因素;4)没有定义判定作者、期刊、文章是"好的"的标准。对以上问题进行了研究并提出HIC-MedRank算法,该算法纳入作者的H指数、期刊的影响因子、文章的引用数作为评判作者、期刊、文章是否优秀的指标,并综合考虑文章的发表时间、支持机构、发表类型等因素,为高血压合并慢性肾脏病(CKD)患者推荐最佳的降压药物。在Medline数据集上的实验结果显示HIC-MedRank推荐的药物比MedRank算法推荐的药物更为精准,与主治医师投票选择的药物较为一致,与美国成人高血压治疗指南(JNC)推荐的药物一致性达到80%。

关键词: 异构信息网络, 数据挖掘, 临床决策支持, H指数, 高血压, 慢性肾脏病, 药物推荐

Abstract: With the rapid growth of medical literature, it is difficult for physicians to maintain up-to-date knowledge by reading biomedical literatures. An algorithm named MedRank can be used to recommend influential medications from literature by analyzing information network, based on the assumption that "a good treatment is likely to be found in a good medical article published in a good journal, written by good author(s)", recomending the most effective drugs for all types of disease patients. But the algorithm still has several problems:1) the diseases, as the inputs, are not independent; 2) the outputs are not specific drugs; 3) some other factors such as the publication time of the article are not considered; 4) there is no definition of "good" for the articles, journals and authors. An improved algorithm named HIC-MedRank was proposed by introducing H-index of authors, impact factor of journals and citation count of articles as criterion for defining good authors, journals and articles, and recommended antihypertensive agents for the patients suffered from Hypertension with Chronic Kidney Disease (CKD) by considering published time, support institutions, publishing type and some other factors of articles. The experimental results on Medline datasets show that the recommendation drugs of HIC-MedRank algorithm are more precise than those of MedRank, and are more recognized by attending physicians. The consistency rate is up to 80% by comparing with the JNC guidelines.

Key words: heterogeneous information network, data mining, clinical decision support, H-index, hypertension, Chronic Kidney Disease (CKD), drug recommendation

中图分类号: