1 |
HAN J W, CHENG H, XIN D, et al. Frequent pattern mining: current status and future directions[J]. Data Mining and Knowledge Discovery, 2007, 15(1): 55-86. 10.1007/s10618-006-0059-1
|
2 |
谢彬,张琨,蔡颖,等. 移动目标关联共现规则挖掘算法研究[J]. 计算机工程, 2018, 44(8): 61-67, 73.
|
|
XIE B, ZHANG K, CAI Y, et al. Research on mining algorithm for association co-occurrence rule of moving targets[J]. Computer Engineering, 2018, 44(8): 61-67, 73.
|
3 |
黄亚坤,王杨,王明星. 综合社区与关联序列挖掘的电子政务推荐算法[J]. 计算机应用, 2017, 37(9): 2671-2677. 10.11772/j.issn.1001-9081.2017.09.2671
|
|
HUANG Y K, WANG Y, WANG M X. E-government recommendation algorithm combining community and association sequence mining[J]. Journal of Computer Applications, 2017, 37(9): 2671-2677. 10.11772/j.issn.1001-9081.2017.09.2671
|
4 |
FOURNIER-VIGER P, LIN J C W, KIRAN R U, et al. A survey of sequential pattern mining[J]. Data Science and Pattern Recognition, 2017, 1(1): 54-77.
|
5 |
GAN W S, LIN J C W, FOURNIER-VIGER P, et al. A survey of parallel sequential pattern mining[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(3): No.25. 10.1145/3314107
|
6 |
SHAIKH M R, McNICHOLAS P D, ANTONIE M L, et al. Standardizing interestingness measures for association rules[J]. Statistical Analysis and Data Mining, 2018, 11(6): 282-295. 10.1002/sam.11394
|
7 |
HÄMÄLÄINEN W, WEBB G I. A tutorial on statistically sound pattern discovery[J]. Data Mining and Knowledge Discovery, 2019, 33(2): 325-377. 10.1007/s10618-018-0590-x
|
8 |
潘舒,祁云嵩. 多重假设检验及其在大数据特征降维中的应用[J]. 计算机科学, 2015, 42(6A): 89-93.
|
|
PAN S, QI Y S. Multiple hypothesis testing and its application in feature dimension reduction[J]. Computer Science, 2015, 42(6A): 89-93.
|
9 |
HAN J W, PEI J, YIN Y W. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 2000, 29(2): 1-12. 10.1145/335191.335372
|
10 |
YAN D, QU W W, GUO G M, et al. PrefixFPM: a parallel framework for general-purpose frequent pattern mining[C]// Proceedings of the IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 1938-1941. 10.1109/icde48307.2020.00208
|
11 |
CHEE C H, JAAFAR J, AZIZ I A, et al. Algorithms for frequent itemset mining: a literature review[J]. Artificial Intelligence Review, 2019, 52(4): 2603-2621. 10.1007/s10462-018-9629-z
|
12 |
FOURNIER-VIGER P, LIN J C W, VO B, et al. A survey of itemset mining[J]. WIREs Data Mining and Knowledge Discovery, 2017, 7(4): No.e1207. 10.1002/widm.1207
|
13 |
PEI J, HAN J W, MORTAZAVI-ASL B, et al. Mining sequential patterns by pattern-growth: the PrefixSpan approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11): 1424-1440. 10.1109/tkde.2004.77
|
14 |
WU Y X, ZHU C R, LI Y, et al. NetNCSP: nonoverlapping closed sequential pattern mining[J]. Knowledge-Based Systems, 2020, 196: No.105812. 10.1016/j.knosys.2020.105812
|
15 |
SON L H, CHICLANA F, KUMAR R, et al. ARM-AMO: an efficient association rule mining algorithm based on animal migration optimization[J]. Knowledge-Based Systems, 2018, 154: 68-80. 10.1016/j.knosys.2018.04.038
|
16 |
WANG C S, CHANG J Y. MISFP-growth: Hadoop-based frequent pattern mining with multiple item support[J]. Applied Sciences, 2019, 9(10): No.2075. 10.3390/app9102075
|
17 |
KOH Y S, RAVANA S D. Unsupervised rare pattern mining: a survey[J]. ACM Transactions on Knowledge Discovery from Data, 2016, 10(4): No.45. 10.1145/2898359
|
18 |
LIU X Q, WU J, GU F Y, et al. Discriminative pattern mining and its applications in bioinformatics[J]. Briefings in Bioinformatics, 2015, 16(5): 884-900. 10.1093/bib/bbu042
|
19 |
YU H H, CHEN C H, TSENG V S. Mining emerging patterns from time series data with time gap constraint[J]. International Journal of Innovative Computing, Information and Control, 2011, 7(9): 5515-5528.
|
20 |
GUNS T, NIJSSEN S, DE RAEDT L. K-pattern set mining under constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(2): 402-418. 10.1109/tkde.2011.204
|
21 |
PETITJEAN F, LI T, TATTI N, et al. Skopus: mining top-k sequential patterns under leverage[J]. Data Mining and Knowledge Discovery, 2016, 30(5): 1086-1111. 10.1007/s10618-016-0467-9
|
22 |
TEW C, GIRAUD-CARRIER C, TANNER K, et al. Behavior-based clustering and analysis of interestingness measures for association rule mining[J]. Data Mining and Knowledge Discovery, 2014, 28(4): 1004-1045. 10.1007/s10618-013-0326-x
|
23 |
TONON A, VANDIN F. Permutation strategies for mining significant sequential patterns[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 1330-1335. 10.1109/icdm.2019.00169
|
24 |
PELLEGRINA L, RIONDATO M, VANDIN F. SPuManTE: significant pattern mining with unconditional testing[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1528-1538. 10.1145/3292500.3330978
|
25 |
吴军,段琼,张琳,等. 磷酸化基序精确置换检验p-value的计算方法[J]. 中国科学:信息科学, 2017, 47(10): 1334-1348.
|
|
WU J, DUAN Q, ZHANG L, et al. Computing exact permutation p-values for phosphorylation motifs[J]. SCIENTIA SINICA Informationis, 2017, 47(10): 1334-1348.
|
26 |
DUA D, GRAFF C. UCI machine learning repository[DB/OL]. [2021-04-15]..
|
27 |
DIELLA F, CAMERON S, GEMÜND C, et al. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins[J]. BMC Bioinformatics, 2004, 5: No.79. 10.1186/1471-2105-5-79
|