计算机应用 ›› 2018, Vol. 38 ›› Issue (3): 916-922.DOI: 10.11772/j.issn.1001-9081.2017071808
• 应用前沿、交叉与综合 • 上一篇
收稿日期:
2017-07-25
修回日期:
2017-09-17
出版日期:
2018-03-10
发布日期:
2018-03-07
通讯作者:
许亮
作者简介:
苏培权(1991-),男,广东潮州人,硕士研究生,主要研究方向:机器视觉、机器学习;许亮(1971-),男,甘肃白银人,高级工程师,博士,主要研究方向:机器视觉、机器学习、无线传感器网络;梁永坚(1991-),男,广东清远人,硕士研究生,主要研究方向:机器视觉、机器学习。
基金资助:
SU Peiquan, XU Liang, LIANG Yongjian
Received:
2017-07-25
Revised:
2017-09-17
Online:
2018-03-10
Published:
2018-03-07
Supported by:
摘要: 针对目前非接触式心率测量存在操作不便、心率同频段噪声干扰大和受环境温度影响较大等问题,提出一种基于欧拉影像放大技术的非接触式心率测量方法。首先,运用欧拉影像放大技术实现手腕处桡动脉微小跳动的动作放大;然后,对脉搏跳动视频帧的像素点亮度值在时域上进行亮度方差统计,同时在YCrCb颜色空间中分割出皮肤区域;其次,根据亮度方差统计和皮肤分割结果,结合图像形态学处理方法提取视频中桡动脉跳动区域;最后,对所提取桡动脉部位时域上亮度信号采用傅里叶变换进行时频分析,实现心率非接触式测量。实验结果表明该方法与独立成分分析法(ICA)和脉搏交流信号分析法相比,均方根误差(RMSE)分别下降50.5%和32.6%;与小波滤波法相比,平均绝对误差下降12%。非接触式心率测量方法测量结果与脉搏血氧仪测量法具有很好一致性,满足中国医药行业标准,可用于日常保健和远程医疗的心率监测。
中图分类号:
苏培权, 许亮, 梁永坚. 基于欧拉影像放大的非接触式心率测量方法[J]. 计算机应用, 2018, 38(3): 916-922.
SU Peiquan, XU Liang, LIANG Yongjian. Non-contact heart rate measurement method based on Eulerian video magnification[J]. Journal of Computer Applications, 2018, 38(3): 916-922.
[1] STONE M L, TATUM P M, WEITKAMP J-H, et al. Abnormal heart rate characteristics before clinical diagnosis of necrotizing enterocolitis[J]. Journal of Perinatology Official Journal of the California Perinatal Association, 2013, 33(11):847-850. [2] OGLIARI G, MAHINRAD S, STOTT D J, et al. Resting heart rate, heart rate variability and functional decline in old age[J]. Canadian Medical Association Journal, 2015, 187(15):E442-E449. [3] GRENEKER E F. Radar sensing of heartbeat and respiration at a distance with applications of the technology[C]//RADAR 97:Proceedings of the 1997 Radar Systems.[S.l.]:The Institution of Engineering and Technology, 1997:150-154. [4] HIGASHIKATURAGI K, NAKAHATA Y, MATSUNAMI I, et al. Non-invasive respiration monitoring sensor using UWB-IR[C]//ICUWB 2008:Proceedings of the 2008 IEEE International Conference on Ultra-Wideband. Piscataway, NJ:IEEE, 2008:29-34. [5] LAZARO A, GIRBAU D, VILLARINO R. Analysis of vital signs monitoring using an Ir-UWB radar[J]. Progress in Electromagnetics Research, 2010, 100:265-284. [6] GARBEY M, SUN N, MERLA A, et al. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(8):1418-1426. [7] TRESKES R W, van de VELDE V, ATSMA D E, et al. Redesigning healthcare:The 2.4 billion euro question?:Connecting smart technology to improve outcome of patients[J]. Netherlands Heart Journal:Monthly Journal of the Netherlands Society of Cardiology & the Netherlands Heart Foundation, 2016, 24(7/8):441-446. [8] TAKANO C, OHTA Y. Heart rate measurement based on a time-lapse image[J]. Medical Engineering & Physics, 2007, 29(8):853-857. [9] ZHENG J, HU S, CHOULIARAS V, et al. Feasibility of imaging photoplethysmography[C]//BMEI'08:Proceedings of the 2008 International Conference on Biomedical Engineering and Informatics. Washington, DC:IEEE Computer Society, 2008, 2:72-75. [10] VERKRUYSSE W, SVAASAND L O, NELSON J S. Remote plethysmographic imaging using ambient light[J]. Optics Express, 2008, 16(26):21434-21445. [11] POH M Z, McDUFF D J, PICARD R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[J]. Optics Express, 2010, 18(10):10762-10774. [12] POH M Z, McDUFF D J, PICARD R W. Advancements in noncontact, multiparameter physiological measurements using a webcam[J]. IEEE Transactions on Bio-medical Engineering, 2011, 58(1):7-11. [13] PURSCHE T, KRAJEWSKI J, MOELLER R. Video-based heart rate measurement from human faces[C]//ICCE 2012:Proceedings of the 2012 IEEE International Conference on Consumer Electronics. Piscataway, NJ:IEEE, 2012:544-545. [14] 刘祎,欧阳健飞,闫勇刚.基于普通摄像头的心率测量方法研究[J].计算机工程与应用,2016,52(7):210-214. (LIU Y, OUYANG J F, YAN Y G. Method of measuring heart rate using a webcam[J]. Computer Engineering and Applications, 2016, 52(7):210-214.) [15] ZHAO F, LI M, QIAN Y, et al. Remote measurements of heart and respiration rates for telemedicine[J]. PLOS ONE, 2013, 8(10):e71384. [16] XU S, SUN L, ROHDE G K. Robust efficient estimation of heart rate pulse from video[J]. Biomedical Optics Express, 2014, 5(4):1124-35. [17] YU Y-P, KWAN B-H, LIM C-L, et al. Video-based heart rate measurement using short-time Fourier transform[C]//ISPACS 2013:Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communications Systems. Piscataway, NJ:IEEE, 2013:704-707. [18] YU Y-P, RAVEENDRAN P, LIM C-L. Dynamic heart rate measurements from video sequences[J]. Biomedical Optics Express, 2015, 6(7):2466-2480. [19] LI X, CHEN J, ZHAO G, et al. Remote heart rate measurement from face videos under realistic situations[C]//CVPR'14:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:4264-4271. [20] LAM A, KUNO Y. Robust heart rate measurement from video using select random patches[C]//ICCV'15:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:3640-3648. [21] ZHANG X Y, ZHANG Y T. The effect of local mild cold exposure on pulse transit time[J]. Physiological Measurement, 2006, 27(7):649-660. [22] KHAN M, PRETTY C G, AMIES A C, et al. Analysing the effects of cold, normal, and warm digits on transmittance pulse oximetry[J]. Biomedical Signal Processing & Control, 2016, 26:34-41. [23] WU H-Y, RUBINSTEIN M, SHIH E, et al. Eulerian video magnification for revealing subtle changes in the world[J]. ACM Transactions on Graphics, 2012, 31(4):Article No. 65. [24] MAHMOUD T M. A new fast skin color detection technique[J]. World Academy of Science:Engineering & Technolog, International Journal of Computer and Information Engineering, 2008, 2(7):2354-2358. |
[1] | 章悦, 张亮, 谢非, 杨嘉乐, 张瑞, 刘益剑. 基于实例分割模型优化的道路抛洒物检测算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3228-3233. |
[2] | 孙琳, 袁玉波. 基于人眼状态的瞌睡识别算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3213-3218. |
[3] | 葛晨宇, 董良, 许伊昆, 常毅, 张宏鸣. 基于总变分低秩组稀疏的全球雷达数据修复算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3353-3361. |
[4] | 闫钧华, 侯平, 张寅, 吕向阳, 马越, 王高飞. 基于多尺度多分类器卷积神经网络的混合失真类型判定方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3178-3184. |
[5] | 李福海, 蒋慕蓉, 杨磊, 谌俊毅. 基于生成对抗网络的梯度引导太阳斑点图像去模糊方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3345-3352. |
[6] | 曹建芳, 闫敏敏, 贾一鸣, 田晓东. 融合迁移学习的Inception-v3模型在古壁画朝代识别中的应用[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3219-3227. |
[7] | 谌贵辉, 刘会康, 李忠兵, 彭娇, 汪少天, 林瑾瑜. 基于仲裁机制的生成对抗网络改进算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3185-3191. |
[8] | 杨鼎康 黄帅 王顺利 翟鹏 李一丹 张立华. 基于对抗生成网络和网络集成的面部表情识别方法EE-GAN[J]. 计算机应用, 0, (): 0-0. |
[9] | 秦庭威 赵鹏程 秦品乐 曾建朝 柴锐 黄永琦. 基于残差注意力机制的点云配准算法[J]. 计算机应用, 0, (): 0-0. |
[10] | 魏淳武, 赵涓涓, 唐笑先, 强彦. 基于多时期蒸馏网络的随访数据知识提取方法[J]. 计算机应用, 2021, 41(10): 2871-2878. |
[11] | 李自强, 王正勇, 陈洪刚, 李林怡, 何小海. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用, 2021, 41(10): 2997-3003. |
[12] | 裴仪瑶, 郭会明, 张丹普, 陈文博. 基于定位不确定性的鲁棒3D目标检测方法[J]. 计算机应用, 2021, 41(10): 2979-2984. |
[13] | 许学斌, 张佳达, 刘伟, 路龙宾, 赵雨晴. 融合空间和通道特征的高精度乳腺癌分类方法[J]. 计算机应用, 2021, 41(10): 3025-3032. |
[14] | 汪虹余, 张彧, 杨恒, 穆楠. 基于蚁群优化算法的弱光图像显著性目标检测[J]. 计算机应用, 2021, 41(10): 2970-2978. |
[15] | 张怡 孙永荣 赵科东 李华 曾庆化. 空中加油场景下的目标联合检测跟踪算法[J]. 计算机应用, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||