《计算机应用》唯一官方网站

• •    下一篇

基于空间变换和特征分布校准的小样本皮肤图像分类模型

王静,刘嘉星,宋婉莹,薛嘉兴,丁温欣   

  1. 西安科技大学
  • 收稿日期:2024-07-23 修回日期:2024-10-12 发布日期:2024-11-19 出版日期:2024-11-19
  • 通讯作者: 刘嘉星
  • 基金资助:
    国家自然科学基金;西安科技大学优秀青年科技基金;中国博士后科学基金面上项目

Few-shot skin image classification model based on spatial transformation and feature distribution calibration

  • Received:2024-07-23 Revised:2024-10-12 Online:2024-11-19 Published:2024-11-19

摘要: 基于深度学习的图像分类模型通常需要大量的标记数据,然而,在医学领域的皮肤病变分类任务中,收集大量图像数据面临着诸多挑战。为了能够完成对小样本皮肤疾病的准确分类,提出一种基于空间变换网络和特征分布校准的小样本分类模型。首先,将迁移学习和元学习相结合,改善跨域迁移小样本存在的过拟合问题;其次,在预训练分类任务前插入旋转角度预测任务,以便模型更好地适应医学图像数据的高复杂度;之后在对图像下采样后引入空间变换网络,通过显式地对输入图像进行仿射变换,增强了特征的提取和识别能力;最后,通过特征分布校准对新类特征进行约束,并引入最邻近质心算法进行分类决策,简化了算法流程的同时显著提升了分类精度。在ISIC2018皮肤图像数据集上进行实验:与当前主流小样本模型Meta-Baseline相比,所提模型在2-way和3-way分类任务下平均精度提高了12.20和11.40个百分点;与MetaMed相比,在2-way 3-shot和3-way 3-shot分类任务中,分类精度分别提升了7.00和10.23个百分点。实验结果表明,所提模型有效提高了小样本皮肤疾病的分类精度,能够更好地辅助医生提高临床诊断精确度。

关键词: 小样本学习, 图像分类, 皮肤病变, 空间变换网络, 最邻近质心

Abstract: Deep learning-based image classification methods typically require a large amount of labeled data. However, in the medical field, especially in the classification task of skin lesions, collecting a vast amount of image data faces numerous challenges. To accurately classify few-shot skin diseases, a few-shot classification model based on spatial transformation network and feature distribution calibration is proposed. First, transfer learning and meta-learning are integrated to address the overfitting issues present in cross-domain few shot transfer. Then, a rotation angle prediction task is inserted before the pre-training classification task to better adapt the model to the high complexity of medical image data. Subsequently, after downsampling the images, a spatial transformer network is introduced to explicitly perform affine transformations on the input images, enhancing feature extraction and recognition capabilities. Finally, feature distribution calibration is used to constrain new class features, and the nearest centroid algorithm is introduced for classification decisions, significantly reducing algorithm complexity while improving classification accuracy. Conduct experiments on the ISIC2018 skin image dataset: Compared to the current mainstream few-shot model Meta-Baseline, The proposed model has achieved an average accuracy improvement of 12.20 and 11.40 percentage points in 2-way and 3-way classification tasks, respectively; compared to MetaMed, The average accuracy has improved by 7.00 and 10.23 percentage points in the 2-way 3-shot and 3-way 3-shot classification tasks, respectively. The experimental results show that the proposed model effectively improves the classification accuracy of few-shot skin diseases, better assisting doctors in enhancing clinical diagnosis accuracy.

Key words: few-shot learning, image classification, skin lesions, Spatial Transformer Networks &#40, STN&#41

中图分类号: