《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (1): 16-25.DOI: 10.11772/j.issn.1001-9081.2021010171
所属专题: 人工智能
收稿日期:
2021-01-29
修回日期:
2021-04-24
接受日期:
2021-05-10
发布日期:
2021-06-04
出版日期:
2022-01-10
通讯作者:
杨悦
作者简介:
杨悦(1995—),女,云南玉溪人,硕士研究生,主要研究方向:机器学习、神经网络基金资助:
Received:
2021-01-29
Revised:
2021-04-24
Accepted:
2021-05-10
Online:
2021-06-04
Published:
2022-01-10
Contact:
Yue YANG
About author:
YANG Yue, born in 1995, M. S. candidate. Her research interests include machine learning, neural network.Supported by:
摘要:
针对单核网络模型的核函数选择无理论依据以及基于随机特征映射的四层神经网络(FRMFNN)节点规模过大的问题,提出了一种基于随机特征映射的四层多核学习神经网络(MK-FRMFNN)算法。首先,把原始输入特征通过特定的随机映射算法转化为随机映射特征;然后,经过不同的随机核映射生成多个基本核矩阵;最后,将基本核矩阵组成合成核矩阵,并通过输出权重连接到输出层。对原始特征进行随机映射的权重是根据任意连续采样概率分布随机生成的,不需要训练更新,且对输出层的权重使用岭回归伪逆算法进行快速求解,从而避免了反复迭代耗时的训练过程。MK-FRMFNN在基本核映射时引入了不同的随机权重矩阵,生成的合成核矩阵不仅可以综合各种核函数的优势,而且可以集合各种随机分布函数的特性,使数据在新的特征空间中获得更好的特征选择和表达效果。理论和实验分析表明,与宽度学习系统(BLS)及FRMFNN等单核模型相比,MK-FRMFNN模型的节点规模减小了2/3左右,且分类性能稳定;与主流的多种多核模型相比,MK-FRMFNN模型能够对大样本数据集进行学习,并且分类性能明显更优。
中图分类号:
杨悦, 王士同. 基于随机特征映射的四层多核学习方法[J]. 计算机应用, 2022, 42(1): 16-25.
Yue YANG, Shitong WANG. Four-layer multiple kernel learning method based on random feature mapping[J]. Journal of Computer Applications, 2022, 42(1): 16-25.
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Letter | 20 000 | 16 | 26 |
Robot | 5 456 | 24 | 4 |
Ecoli | 336 | 7 | 8 |
ACT | 46 728 | 8 | 2 |
Adult | 48 841 | 14 | 2 |
Australian | 690 | 14 | 2 |
Eye state | 14 980 | 15 | 2 |
Magic | 19 020 | 11 | 2 |
Car | 1 594 | 6 | 2 |
表1 数据集的详细信息
Tab. 1 Details of datasets
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Letter | 20 000 | 16 | 26 |
Robot | 5 456 | 24 | 4 |
Ecoli | 336 | 7 | 8 |
ACT | 46 728 | 8 | 2 |
Adult | 48 841 | 14 | 2 |
Australian | 690 | 14 | 2 |
Eye state | 14 980 | 15 | 2 |
Magic | 19 020 | 11 | 2 |
Car | 1 594 | 6 | 2 |
C值 | Ecoli | Australian | Car | |||
---|---|---|---|---|---|---|
Train_acc | Test_acc | Train_acc | Test_acc | Train_acc | Test_acc | |
2-24 | 87.36±1.37 | 82.18±2.38 | 88.34±0.71 | 85.17±0.81 | 92.11±0.24 | 90.79±0.30 |
2-22 | 86.72±1.70 | 80.30±2.27 | 87.87±0.48 | 84.78±0.82 | 91.78±0.18 | 90.79±0.40 |
2-20 | 87.40±1.66 | 83.37±1.46 | 87.99±0.39 | 84.69±0.92 | 91.63±0.21 | 90.42±0.48 |
2-18 | 86.77±1.78 | 81.49±2.47 | 87.50±0.50 | 84.44±0.89 | 91.39±0.33 | 90.77±0.58 |
2-16 | 85.06±2.32 | 79.21±3.07 | 87.68±0.65 | 84.93±0.60 | 90.98±0.33 | 90.29±0.34 |
2-14 | 85.32±1.21 | 80.89±1.66 | 87.41±0.50 | 84.59±0.76 | 90.75±0.36 | 90.27±0.46 |
2-12 | 84.55±2.64 | 79.21±3.04 | 87.62±0.50 | 84.69±0.75 | 90.54±0.31 | 89.96±0.36 |
2-10 | 82.47±1.54 | 78.81±2.43 | 87.37±0.46 | 84.35±0.44 | 90.25±0.36 | 89.60±0.43 |
表2 在不同正则化参数下的实验结果 (%)
Table 2 Experimental results with different regularization parameters
C值 | Ecoli | Australian | Car | |||
---|---|---|---|---|---|---|
Train_acc | Test_acc | Train_acc | Test_acc | Train_acc | Test_acc | |
2-24 | 87.36±1.37 | 82.18±2.38 | 88.34±0.71 | 85.17±0.81 | 92.11±0.24 | 90.79±0.30 |
2-22 | 86.72±1.70 | 80.30±2.27 | 87.87±0.48 | 84.78±0.82 | 91.78±0.18 | 90.79±0.40 |
2-20 | 87.40±1.66 | 83.37±1.46 | 87.99±0.39 | 84.69±0.92 | 91.63±0.21 | 90.42±0.48 |
2-18 | 86.77±1.78 | 81.49±2.47 | 87.50±0.50 | 84.44±0.89 | 91.39±0.33 | 90.77±0.58 |
2-16 | 85.06±2.32 | 79.21±3.07 | 87.68±0.65 | 84.93±0.60 | 90.98±0.33 | 90.29±0.34 |
2-14 | 85.32±1.21 | 80.89±1.66 | 87.41±0.50 | 84.59±0.76 | 90.75±0.36 | 90.27±0.46 |
2-12 | 84.55±2.64 | 79.21±3.04 | 87.62±0.50 | 84.69±0.75 | 90.54±0.31 | 89.96±0.36 |
2-10 | 82.47±1.54 | 78.81±2.43 | 87.37±0.46 | 84.35±0.44 | 90.25±0.36 | 89.60±0.43 |
数据集 | BLS | FRMFNN | MK-FRMFNN |
---|---|---|---|
[Nf ×Nm,Ne,C] | [Nf ×Nm,Ne,C] | [Nf ×Nm,Ne, | |
Letter | [11×9, 2 500, 2-24] | [11×11, 2 940, 2-24] | [11×10, 960, 10-2, 1, 2-24] |
Robot | [5×6, 2 930, 2-24] | [3×9, 2 690, 2-24] | [3×7, 940, 10-2, 10, 2-24] |
Ecoli | [2×2, 245, 2-24] | [2×2, 235, 2-24] | [2×2, 41, 10-2, 10-1, 2-24] |
ACT | [3×8, 1 040, 2-24] | [4×5, 990, 2-24] | [4×5, 300, 10-1, 10, 2-24] |
Adult | [4×7, 1 890, 2-24] | [8×5, 1 020, 2-24] | [7×4, 330, 102, 1, 2-24] |
Australian | [7×6, 84, 2-24] | [7×4, 80, 2-24] | [6×3, 28, 10, 102, 2-24] |
Eye state | [11×10, 2 880, 2-24] | [11×11, 2 000, 2-24] | [10×10, 675, 10-1, 10-1, 2-24] |
Magic | [10×9, 1 900, 2-24] | [11×9, 810, 2-24] | [10×8, 310, 1, 1, 2-24] |
Car | [4×2, 1 520, 2-24] | [5×3, 1 130, 2-24] | [5×2, 390, 1, 102, 2-24] |
表3 BLS、FRMFNN和MK-FRMFNN模型的参数设置
Tab.3 Parameter settings of BLS, FRMFNN and MK-FRMFNN models
数据集 | BLS | FRMFNN | MK-FRMFNN |
---|---|---|---|
[Nf ×Nm,Ne,C] | [Nf ×Nm,Ne,C] | [Nf ×Nm,Ne, | |
Letter | [11×9, 2 500, 2-24] | [11×11, 2 940, 2-24] | [11×10, 960, 10-2, 1, 2-24] |
Robot | [5×6, 2 930, 2-24] | [3×9, 2 690, 2-24] | [3×7, 940, 10-2, 10, 2-24] |
Ecoli | [2×2, 245, 2-24] | [2×2, 235, 2-24] | [2×2, 41, 10-2, 10-1, 2-24] |
ACT | [3×8, 1 040, 2-24] | [4×5, 990, 2-24] | [4×5, 300, 10-1, 10, 2-24] |
Adult | [4×7, 1 890, 2-24] | [8×5, 1 020, 2-24] | [7×4, 330, 102, 1, 2-24] |
Australian | [7×6, 84, 2-24] | [7×4, 80, 2-24] | [6×3, 28, 10, 102, 2-24] |
Eye state | [11×10, 2 880, 2-24] | [11×11, 2 000, 2-24] | [10×10, 675, 10-1, 10-1, 2-24] |
Magic | [10×9, 1 900, 2-24] | [11×9, 810, 2-24] | [10×8, 310, 1, 1, 2-24] |
Car | [4×2, 1 520, 2-24] | [5×3, 1 130, 2-24] | [5×2, 390, 1, 102, 2-24] |
数据集 | BLS | FRMFNN | MK-FRMFNN | |||
---|---|---|---|---|---|---|
Train_acc | Test_acc | Train_acc | Test_acc | Train_acc | Test_acc | |
Letter | 96.58±0.57 | 93.42±0.53 | 96.59±0.006 0 | 93.41±0.005 3 | 96.58±0.004 7 | 93.43±0.004 3 |
Robot | 96.78±0.27 | 90.19±0.32 | 96.35±0.002 3 | 90.00±0.004 8 | 94.36±0.005 8 | 89.54±0.006 3 |
Ecoli | 89.11±1.05 | 82.08±1.50 | 88.00±1.42 | 82.57±1.73 | 87.36±1.37 | 82.18±2.38 |
ACT | 99.21±0.01 | 99.32±0.01 | 99.21±0.01 | 99.31±0.01 | 99.19±0.03 | 99.29±0.04 |
Adult | 79.54±0.08 | 79.72±0.16 | 79.68±0.05 | 79.78±0.07 | 79.60±0.08 | 79.71±0.11 |
Australian | 90.48±0.61 | 83.53±1.25 | 89.83±0.41 | 84.06±0.86 | 88.34±0.71 | 85.17±0.81 |
Eye state | 86.19±0.36 | 85.12±0.28 | 86.07±0.60 | 85.07±0.57 | 86.10±0.31 | 85.07±0.25 |
Magic | 83.40±0.21 | 82.85±0.26 | 83.43±0.28 | 82.82±0.24 | 82.58±0.17 | 82.11±0.17 |
Car | 92.05±0.27 | 90.94±0.42 | 92.07±0.35 | 90.67±0.38 | 92.11±0.24 | 90.79±0.30 |
表4 BLS,FRMFNN和MK-FRMFNN模型在用于分类的数据集上的准确率比较 (%)
Table 4 Accuracy comparison of BLS, FRMFNN and MK-FRMFNN models on datasets for classification
数据集 | BLS | FRMFNN | MK-FRMFNN | |||
---|---|---|---|---|---|---|
Train_acc | Test_acc | Train_acc | Test_acc | Train_acc | Test_acc | |
Letter | 96.58±0.57 | 93.42±0.53 | 96.59±0.006 0 | 93.41±0.005 3 | 96.58±0.004 7 | 93.43±0.004 3 |
Robot | 96.78±0.27 | 90.19±0.32 | 96.35±0.002 3 | 90.00±0.004 8 | 94.36±0.005 8 | 89.54±0.006 3 |
Ecoli | 89.11±1.05 | 82.08±1.50 | 88.00±1.42 | 82.57±1.73 | 87.36±1.37 | 82.18±2.38 |
ACT | 99.21±0.01 | 99.32±0.01 | 99.21±0.01 | 99.31±0.01 | 99.19±0.03 | 99.29±0.04 |
Adult | 79.54±0.08 | 79.72±0.16 | 79.68±0.05 | 79.78±0.07 | 79.60±0.08 | 79.71±0.11 |
Australian | 90.48±0.61 | 83.53±1.25 | 89.83±0.41 | 84.06±0.86 | 88.34±0.71 | 85.17±0.81 |
Eye state | 86.19±0.36 | 85.12±0.28 | 86.07±0.60 | 85.07±0.57 | 86.10±0.31 | 85.07±0.25 |
Magic | 83.40±0.21 | 82.85±0.26 | 83.43±0.28 | 82.82±0.24 | 82.58±0.17 | 82.11±0.17 |
Car | 92.05±0.27 | 90.94±0.42 | 92.07±0.35 | 90.67±0.38 | 92.11±0.24 | 90.79±0.30 |
数据集 | 算法 | 参数 | 精度/% |
---|---|---|---|
Ecoli | simpleMKL | C=23 | 73.30 |
easyMKL | λ=0.3 | 75.26 | |
GLMKL | C=24 | 73.29 | |
NLMKL | C=24 | 75.26 | |
MK-FRMFNN | C=2-24 | 82.18 | |
Car | simpleMKL | C=23 | 81.36 |
easyMKL | λ=0.1 | 83.33 | |
GLMKL | C=2-1 | 80.48 | |
NLMKL | C=25 | 83.15 | |
MK-FRMFNN | C=2-24 | 90.79 | |
Australian | simpleMKL | C=24 | 78.18 |
easyMKL | λ=0.1 | 80.28 | |
GLMKL | C=20 | 79.43 | |
NLMKL | C=25 | 80.12 | |
MK-FRMFNN | C=2-24 | 85.17 |
表5 三个数据集上的实验参数及结果
Tab. 5 Experimental parameters and results on three datasets
数据集 | 算法 | 参数 | 精度/% |
---|---|---|---|
Ecoli | simpleMKL | C=23 | 73.30 |
easyMKL | λ=0.3 | 75.26 | |
GLMKL | C=24 | 73.29 | |
NLMKL | C=24 | 75.26 | |
MK-FRMFNN | C=2-24 | 82.18 | |
Car | simpleMKL | C=23 | 81.36 |
easyMKL | λ=0.1 | 83.33 | |
GLMKL | C=2-1 | 80.48 | |
NLMKL | C=25 | 83.15 | |
MK-FRMFNN | C=2-24 | 90.79 | |
Australian | simpleMKL | C=24 | 78.18 |
easyMKL | λ=0.1 | 80.28 | |
GLMKL | C=20 | 79.43 | |
NLMKL | C=25 | 80.12 | |
MK-FRMFNN | C=2-24 | 85.17 |
1 | SCHÖLKOPF B, SMOLA A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. 1st ed. Cambridge: MIT Press, 2001:10-41. |
2 | WANG Z, CHEN S C, SUN T K. MultiK-MHKS: a novel multiple kernel learning algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):348-353. 10.1109/tpami.2007.70786 |
3 | ZHENG H, YE Q L, JIN Z. A novel multiple kernel sparse representation based classification for face recognition[J]. KSII Transactions on Internet and Information Systems, 2014, 8(4): 1463-1480. 10.3837/tiis.2014.04.017 |
4 | SAUNDERS C, STITSON M O, WESTON J, et al. Support vector machine[J]. Computer Science, 2002, 1(4):1-28. |
5 | SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300. 10.1023/a:1018628609742 |
6 | 陶剑文,王士同. 领域适应核支持向量机[J]. 自动化学报, 2012, 38(5):797-811. 10.3724/SP.J.1004.2012.00797 |
TAO J W, WANG S T. Kernel support vector machine for domain adaptation[J]. Acta Automatica Sinica, 2012, 38(5):797-811. 10.3724/SP.J.1004.2012.00797 | |
7 | HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2):513-529. 10.1109/tsmcb.2011.2168604 |
8 | CHEN C L P, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1):10-24. 10.1109/tnnls.2017.2716952 |
9 | 杨悦,王士同. 随机特征映射的四层神经网络及其增量学习[J]. 计算机科学与探索, 2021, 15(7):1265-1278. 10.3389/fpsyg.2021.760060 |
YANG Y, WANG S T. A novel four-layer neural network and its incremental learning based on randomly mapped features[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7):1265-1278. 10.3389/fpsyg.2021.760060 | |
10 | HOERL A E, KENNARD R W. Ridge regression: biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1):55-67. 10.1080/00401706.1970.10488634 |
11 | BEN-HUR A, NOBLE W S. Kernel methods for predicting protein-protein interactions[J]. Bioinformatics, 2005, 21(S1):i38-i46. 10.1093/bioinformatics/bti1016 |
12 | 钟志鹏,张立保. 基于多核学习特征融合的人脸表情识别[J]. 计算机应用, 2015, 35(S2):245-249. 10.1007/s10489-021-02575-0 |
ZHONG Z P, ZHANG L B. Facial expression recognition based on multi-feature fusion by multi-kernel SVM[J]. Journal of Computer Applications, 2015, 35(S2):245-249. 10.1007/s10489-021-02575-0 | |
13 | KINGSBURY N, TAY D B H, PALANISWAMI M. Multi-scale kernel methods for classification[C]// Proceedings of the 2005 IEEE Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2005:43-48. 10.1109/mlsp.2005.1532872 |
14 | DAMOULAS T, GIROLAMI M A, NOTES A. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection[J]. Bioinformatics, 2008, 24(10):1264-1270. 10.1093/bioinformatics/btn112 |
15 | 汪洪桥,孙富春,蔡艳宁,等. 多核学习方法[J]. 自动化学报, 2010, 36(8):1037-1050. 10.3724/SP.J.1004.2010.01037 |
WANG H Q, SUN F C, CAI Y N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8):1037-1050. 10.3724/SP.J.1004.2010.01037 | |
16 | 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:63-66, 137-140. 10.21436/inbom.12382432 |
ZHOU Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016:63-66, 137-140. 10.21436/inbom.12382432 | |
17 | AIOLLI F, DONINI M. EasyMKL: a scalable multiple kernel learning algorithm[J]. Neurocomputing, 2015, 169:215-224. 10.1016/j.neucom.2014.11.078 |
18 | RAKOTOMAMONJY A, BACH F R, CANU S, et al. Simple MKL[J]. Journal of Machine Learning Research, 2008, 9: 2491-2521. |
19 | VARMA M, BABU B R. More generality in efficient multiple kernel learning[C]// Proceedings of the 26th International Conference on Machine Learning. New York: ACM, 2009: 1065-1072. 10.1145/1553374.1553510 |
20 | CORTES C, MOHRI M, ROSTAMIZADEH A. Learning non-linear combinations of kernels[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2009:396-404. 10.1109/icassp.2003.1198859 |
21 | XU Z L, JIN R, YANG H Q, et al. Simple and efficient multiple kernel learning by group lasso[C]// Proceedings of the 27th International Conference on Machine Learning. Madison, WI: Omnipress, 2010: 1175-1182. |
22 | TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1):267-288. 10.1111/j.2517-6161.1996.tb02080.x |
23 | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1):1-122. 10.1561/2200000016 |
24 | GOLDSTEIN T, O’DONOGHUE B, SETZER S, et al. Fast alternating direction optimization methods[J]. SIAM Journal on Imaging Sciences, 2014, 7(3) 1588-1623. 10.1137/120896219 |
25 | CRISTIANINTNELLO. An introduction to support vector machines and other kernel-based learning methods[J]. Kybernetes, 2000, 30(1):103-115. 10.1108/k.2001.30.1.103.6 |
26 | DUA D, GRAFF C. UCI repository of machine learning repository[DS/OL]. [2021-01-12].. |
[1] | 巫婕, 钱雪忠, 宋威. 基于相似度聚类和正则化的个性化联邦学习[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3345-3353. |
[2] | 张帅华, 张淑芬, 周明川, 徐超, 陈学斌. 基于半监督联邦学习的恶意流量检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3487-3494. |
[3] | 蓝梦婕, 蔡剑平, 孙岚. 非独立同分布数据下的自正则化联邦学习优化方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2073-2081. |
[4] | 李文博, 刘波, 陶玲玲, 罗棻, 张航. L1正则化的深度谱聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3662-3667. |
[5] | 祁祥洲, 邢红杰. 基于中心核对齐的多核单类支持向量机[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 349-356. |
[6] | 范莉莉, 卢桂馥, 唐肝翌, 杨丹. 基于Hessian正则化和非负约束的低秩表示子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 115-122. |
[7] | 林筠超, 万源. 基于图结构优化的自适应多度量非监督特征选择方法[J]. 计算机应用, 2021, 41(5): 1282-1289. |
[8] | 贺杰安, 吴晓红, 何小海, 胡建蓉, 卿粼波. 结合图像增强和卷积神经网络的小麦不完善粒识别[J]. 计算机应用, 2021, 41(3): 911-916. |
[9] | 刘乾, 王洪元, 曹亮, 孙博言, 肖宇, 张继. 基于联合损失胶囊网络的换衣行人重识别[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3596-3601. |
[10] | 陈献, 胡丽莹, 林晓炜, 陈黎飞. 基于核非负矩阵分解的有向图聚类算法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3447-3454. |
[11] | 王梅, 许传海, 刘勇. 基于神经正切核的多核学习方法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3462-3467. |
[12] | 李华, 卢桂馥, 余沁茹. 基于干净数据的流形正则化非负矩阵分解[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3492-3498. |
[13] | 汪志远, 降爱莲, 奥斯曼·穆罕默德. 基于正则互表示的无监督特征选择方法[J]. 计算机应用, 2020, 40(7): 1896-1900. |
[14] | 谢琪, 徐旭, 程耕国, 陈和平. 基于新的森林优化算法的特征选择算法[J]. 计算机应用, 2020, 40(5): 1266-1271. |
[15] | 耿源谦, 吴传生, 刘文. 混合非凸非光滑正则化约束的模糊图像盲复原[J]. 计算机应用, 2020, 40(4): 1171-1176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||