1 |
李志杰,李元香,王峰,等. 面向大数据分析的在线学习算法综述[J]. 计算机研究与发展, 2015, 52(8): 1707-1721. 10.7544/issn1000-1239.2015.20150185
|
|
LI Z J, LI Y X, WANG F, et al. Online learning algorithm for big data analytics: a survey[J]. Journal of Computer Research and Development, 2015, 52(8): 1707-1721. 10.7544/issn1000-1239.2015.20150185
|
2 |
翟婷婷, 高阳, 朱俊武. 面向流数据分类的在线学习综述[J]. 软件学报, 2020, 31(4):912-931. 10.13328/j.cnki.jos.005916
|
|
ZHAI T T, GAO Y, ZHU J W. Survey of online learning algorithms for streaming data classification[J]. Journal of Software, 2020, 31(4):912-931. 10.13328/j.cnki.jos.005916
|
3 |
潘志松,唐斯琪,邱俊洋,等. 在线学习算法综述[J]. 数据采集与处理,2016, 31(6):1067-1082.
|
|
PAN Z S, TANG S Q, QIU J Y, et al. Survey on online learning algorithms[J]. Journal of Data Acquisition and Processing,2016, 31(6):1067-1082.
|
4 |
WANG Z, CRAMMER K, VUCETIC S. Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training [J]. Journal of Machine Learning Research, 2012, 13: 3103-3131.
|
5 |
CAVALLANTI G, CESA-BIANCHI N, GENTILE C. Tracking the best hyperplane with a simple budget perceptron [J]. Machine Learning, 2007, 69(2/3):143-167. 10.1007/s10994-007-5003-0
|
6 |
DEKEL O, SHALEV-SHWARTZ S, SINGER Y. The forgetron: a kernel-based perceptron on a budget [J]. SIAM Journal on Computing, 2008, 37(5):1342-1372. 10.1137/060666998
|
7 |
CRAMMER K, KANDOLA J S, SINGER Y. Online classification on a budget [EB/OL].[2021-06-22]. .
|
8 |
LU J, HOI S C, WANG J, et al. Large scale online kernel learning [J]. Journal of Machine Learning Research, 2016, 17(47):1-43.
|
9 |
SHALEV-SHWARTZ S. Online learning and online convex optimization [J]. Foundations and Trends in Machine Learning, 2012, 4(2):107-194.
|
10 |
HUANG Z F. Near optimal frequent directions for sketching dense and sparse matrices [EB/OL].[2021-06-22]. .
|
11 |
CALANDRIELLO D, LAZARIC A, VALKO M. Efficient second-order online kernel learning with adaptive embedding [EB/OL].[2020-06-22]. .
|
12 |
CALANDRIELLO D, LAZARIC A, VALKO M. Second-order kernel online convex optimization with adaptive sketching [EB/OL].[2021-06-22]. .
|
13 |
LUO L, CHEN C, ZHANG Z, et al. Robust frequent directions with application in online learning [J]. Journal of Machine Learning Research, 2019, 20(45):1-41.
|
14 |
ENGEL Y, MANNOR S, MEIR R. The kernel recursive least-squares algorithm[J]. IEEE Transactions on Signal Processing, 2004, 52(8):2275-2285. 10.1109/tsp.2004.830985
|
15 |
MU X, ZHU F, DU J, et al. Streaming classification with emerging new class by class matrix sketching[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2017: 2373-2379.
|
16 |
YE Q, LUO L, ZHANG Z. Frequent direction algorithms for approximate matrix multiplication with applications in CCA[EB/OL].[2021-06-22]. .
|
17 |
LUO H, AGARWAL A, CESA-BIANCHI N, et al. Efficient second order online learning via sketching [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems.Red Hook, NY:Curran Associates Inc.,2016: 910-918.
|
18 |
张骁, 廖士中.在线核选择的随机素描方法[D]. 天津: 天津大学, 2019: 11. 10.1145/3357384.3358019
|
|
ZHANG X, LIAO S Z. Online kernel selection via randomized sketching[D]. Tianjin: Tianjin University, 2019: 11. 10.1145/3357384.3358019
|
19 |
WILLIAMS C K I, SEEGER M W. Using the Nyström method to speed up kernel machines [C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000: 682-688.
|
20 |
YANG T, LI Y, MAHDAVI M, et al. Nyström method vs random Fourier features: a theoretical and empirical comparison [J]. Advances in Neural Information Processing Systems, 2012, 25: 485-493.
|
21 |
GHASHAMI M, LIBERTY E, PHILLIPS J M, et al. Frequent directions: simple and deterministic matrix sketching [J]. SIAM Journal on Computing, 2016, 45(5):1762-1792. 10.1137/15m1009718
|
22 |
DRINEAS P, MAHONEY M W, MUTHUKRISHNAN S. Relative-error CUR matrix decompositions [J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(2):844-881. 10.1137/07070471x
|
23 |
HAZAN E, AGARWAL A, KALE S. Logarithmic regret algorithms for online convex optimization [J]. Machine Learning, 2007, 69(2/3):169-192. 10.1007/s10994-007-5016-8
|
24 |
GAO W, JIN R, ZHU S, et al. One-pass auc optimization [J]. Artificial Intelligence, 2016, 236:1-29. 10.1016/j.artint.2016.03.003
|