| 1 | 王冠宇,王庆生,赵腾.混合蛙跳算法在云计算资源调度的策略改进[J].科学技术与工程,2018,18(4):297-303.  10.3969/j.issn.1671-1815.2018.04.047 | 
																													
																						|  | WANG G Y, WANG Q S, ZHAO T. The improved strategy of shuffled frog leaping algorithm in the resource scheduling of cloud computing [J]. Science Technology and Engineering, 2018, 18(4): 297-303.  10.3969/j.issn.1671-1815.2018.04.047 | 
																													
																						| 2 | ALDOSSARY M. A review of dynamic resource management in cloud computing environments [J]. Computer Systems Science and Engineering, 2021, 36(3): 461-476.  10.32604/csse.2021.014975 | 
																													
																						| 3 | KUMAR M, SHARMA S C, GOEL A, et al. A comprehensive survey for scheduling techniques in cloud computing [J]. Journal of Network and Computer Applications, 2019, 143: 1-33.  10.1016/j.jnca.2019.06.006 | 
																													
																						| 4 | HU H Y, LI Z J, HU H, et al. Multi-objective scheduling for scientific workflow in multicloud environment [J]. Journal of Network and Computer Applications, 2018, 114: 108-122.  10.1016/j.jnca.2018.03.028 | 
																													
																						| 5 | ZHANG G H, ODBAL, ABNOOSIAN K. Scheduling mechanisms in the cloud environment: a methodological analysis [J]. Kybernetes, 2020, 49(12): 2977-2992.  10.1108/k-09-2019-0629 | 
																													
																						| 6 | ARORA M, KUMAR V, DAVE M. Task scheduling in cloud infrastructure using optimization technique genetic algorithm [C]// Proceedings of the 2020 4th World Conference on Smart Trends in Systems, Security and Sustainability. Piscataway: IEEE, 2020: 788-793.  10.1109/worlds450073.2020.9210303 | 
																													
																						| 7 | KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948.  10.1109/icnn.1995.488968 | 
																													
																						| 8 | DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41.  10.1109/3477.484436 | 
																													
																						| 9 | SANAJ M S, PRATHAP P M JOE. Nature inspired Chaotic Squirrel Search Algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere [J]. Engineering Science and Technology, an International Journal, 2020, 23(4): 891-902.  10.1016/j.jestch.2019.11.002 | 
																													
																						| 10 | VELLIANGIRI S, KARTHIKEYAN P, ARUL XAVIER V M, et al. Hybrid electro search with genetic algorithm for task scheduling in cloud computing [J]. Ain Shams Engineering Journal, 2021, 12(1): 631-639.  10.1016/j.asej.2020.07.003 | 
																													
																						| 11 | NATESAN G, CHOKKALINGAM A. An improved grey wolf optimization algorithm based task scheduling in cloud computing environment [J]. The International Arab Journal of Information Technology, 2020, 17(1): 73-81.  10.34028/iajit/17/1/9 | 
																													
																						| 12 | MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67.  10.1016/j.advengsoft.2016.01.008 | 
																													
																						| 13 | XU Z Z, HU Z Y, HEIDARI A A, et al. Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis [J]. Expert Systems with Applications, 2020, 150: Article No.113282.  10.1016/j.eswa.2020.113282 | 
																													
																						| 14 | SREENU K, SREELATHA M. W-Scheduler: whale optimization for task scheduling in cloud computing [J]. Cluster Computing, 2019, 22(S1): 1087-1098.  10.1007/s10586-017-1055-5 | 
																													
																						| 15 | CHEN X, CHENG L, LIU C, et al. A WOA-based optimization approach for task scheduling in cloud computing systems [J]. IEEE Systems Journal, 2020, 14(3): 3117-3128.  10.1109/jsyst.2019.2960088 | 
																													
																						| 16 | 閤大海,李元香,祝婕.基于正交设计的反向学习差分进化算法[J].华中科技大学学报(自然科学版),2017,45(5):23-27,44. | 
																													
																						|  | XIA D H, LI Y X, ZHU J. Differential evolution algorithm using orthogonal design opposition-based learning [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(5): 23-27, 44. | 
																													
																						| 17 | 郝晓弘,宋吉祥,周强,等.混合策略改进的鲸鱼优化算法[J].计算机应用研究,2020,37(12):3622-3626,3655. | 
																													
																						|  | HAO X H, SONG J X, ZHOU Q, et al. Improved whale optimization algorithm based on hybrid strategy [J]. Application Research of Computers, 2020, 37(12): 3622-3626, 3655. | 
																													
																						| 18 | YANG X S, HOSSEIN GANDOMI A. Bat algorithm: a novel approach for global engineering optimization [J]. Engineering Computations, 2012, 29(5): 464-483.  10.1108/02644401211235834 | 
																													
																						| 19 | CHAKRABORTY S, SAHA A K, SHARMA S, et al. A novel enhanced whale optimization algorithm for global optimization [J]. Computers and Industrial Engineering, 2021, 153: Article No.107086.  10.1016/j.cie.2020.107086 | 
																													
																						| 20 | 武泽权,牟永敏.一种改进的鲸鱼优化算法[J].计算机应用研究,2020,37(12):3618-3621. | 
																													
																						|  | WU Z Q, MU Y M. Improved whale optimization algorithm [J]. Application Research of Computers, 2020, 37(12): 3618-3621. |