| 1 | 邓凯,黄佳进,秦进. 基于物品的统一推荐模型[J]. 计算机应用, 2020, 40(2):530-534.  10.11772/j.issn.1001-9081.2019101791 | 
																													
																						|  | DENG K, HUNAG J J, QIN J. Item-based unified recommendation model[J]. Journal of Computer Applications, 2020, 40(2): 530-534.  10.11772/j.issn.1001-9081.2019101791 | 
																													
																						| 2 | 张文龙,钱付兰,陈洁,等. 基于双重最相关注意力网络的协同过滤推荐算法[J]. 计算机应用, 2020, 40(12):3445-3450.  10.11772/j.issn.1001-9081.2020061023 | 
																													
																						|  | ZHANG W L, QIAN F L, CHEN J, et al. Collaborative filtering recommendation algorithm based on dual most relevant attention network[J]. Journal of Computer Applications, 2020, 40(12): 3445-3450.  10.11772/j.issn.1001-9081.2020061023 | 
																													
																						| 3 | 郭宁宁,王宝亮,侯永宏,等. 融合社交网络特征的协同过滤推荐算法[J]. 计算机科学与探索, 2018, 12(2):208-217.  10.3778/j.issn.1673-9418.1702012 | 
																													
																						|  | GUO N N, WANG B L, HOU Y H, et al. Collaborative filtering recommendation algorithm based on characteristics of social network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 208-217.  10.3778/j.issn.1673-9418.1702012 | 
																													
																						| 4 | 孙金杨,刘柏嵩,任豪,等. NHRec:一种基于长短期兴趣的神经混合推荐模型[J]. 小型微型计算机系统, 2020, 41(11): 2298-2302.  10.3969/j.issn.1000-1220.2020.11.010 | 
																													
																						|  | SUN J Y, LIU B S, REN H, et al. Neural hybrid recommendation model based on long-term and short-term interests[J]. Journal of Chinese Computer Systems, 2020, 41(11): 2298-2302.  10.3969/j.issn.1000-1220.2020.11.010 | 
																													
																						| 5 | 欧辉思,曹健. 面向跨领域的推荐系统研究现状与趋势[J]. 小型微型计算机系统, 2016, 37(7):1411-1416.  10.3969/j.issn.1000-1220.2016.07.008 | 
																													
																						|  | OU H S, CAO J. Survey on research and progress of cross-domain recommendation[J]. Journal of Chinese Computer Systems, 2016, 37(7): 1411-1416.  10.3969/j.issn.1000-1220.2016.07.008 | 
																													
																						| 6 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29) [2021-06-30]..  10.1145/3269206.3271761 | 
																													
																						| 7 | YU F, LIU Q, WU S, et al. A dynamic recurrent model for next basket recommendation[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 729-732.  10.1145/2911451.2914683 | 
																													
																						| 8 | 黄立威,江碧涛,吕守业,等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647.  10.11897/SP.J.1016.2018.01619 | 
																													
																						|  | HUANG L W, JIANG B T, LYU S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.  10.11897/SP.J.1016.2018.01619 | 
																													
																						| 9 | McAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52.  10.1145/2766462.2767755 | 
																													
																						| 10 | HE R N, McAULEY J. VBPR: visual Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 30th Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 144-150. | 
																													
																						| 11 | HAN X T, WU Z X, JIANG Y G, et al. Learning fashion compatibility with bidirectional LSTMs[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 1078-1086.  10.1145/3123266.3123394 | 
																													
																						| 12 | CHEN J Y, ZHANG H W, HE X N, et al. Attentive collaborative filtering: multimedia recommendation with item- and component-level attention[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 335-344.  10.1145/3077136.3080797 | 
																													
																						| 13 | HE X N, CHEN T, KAN M Y, et al. TriRank: review-aware explainable recommendation by modeling aspects[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 1661-1670.  10.1145/2806416.2806504 | 
																													
																						| 14 | ZHANG Y F, AI Q Y, CHEN X, et al. Joint representation learning for top-N recommendation with heterogeneous information sources[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1449-1458.  10.1145/3132847.3132892 | 
																													
																						| 15 | CHENG Z Y, DING Y, ZHU L, et al. Aspect-aware latent factor model: rating prediction with ratings and reviews[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 639-648.  10.1145/3178876.3186145 | 
																													
																						| 16 | LI C L, NIU X C, LUO X Y, et al. A review-driven neural model for sequential recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2866-2872.  10.24963/ijcai.2019/397 | 
																													
																						| 17 | CHEN X, CHEN H X, XU H T, et al. Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 765-774.  10.1145/3331184.3331254 | 
																													
																						| 18 | WEI Y W, WANG X, NIE L Q, et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1437-1445.  10.1145/3343031.3351034 | 
																													
																						| 19 | CUI Q, WU S, LIU Q, et al. MV-RNN: a multi-view recurrent neural network for sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(2): 317-331.  10.1109/tkde.2018.2881260 | 
																													
																						| 20 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607.  10.48550/arXiv.2002.05709 | 
																													
																						| 21 | LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[EB/OL]. (2015-10-17) [2021-06-30]. . | 
																													
																						| 22 | GERS F A, SCHMIDHUBER J. Recurrent nets that time and count[C]// Proceedings of the 2000 IEEE-INNS-ENNS International Joint Conference on Neural Networks. Piscataway: IEEE, 2000: 189-194.  10.1109/ijcnn.2000.861302 | 
																													
																						| 23 | HE R N, KANG W C, McAULEY J. Translation-based recommendation[C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 161-169.  10.1145/3109859.3109882 | 
																													
																						| 24 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182.  10.1145/3038912.3052569 | 
																													
																						| 25 | TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.  10.1145/3159652.3159656 | 
																													
																						| 26 | KANG W C, McAULEY J J. Self-attentive sequential recommendation[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.  10.1109/icdm.2018.00035 | 
																													
																						| 27 | SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.  10.1145/3357384.3357895 | 
																													
																						| 28 | CHEN T W, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1172-1180.  10.1145/3394486.3403170 |