《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (6): 1950-1956.DOI: 10.11772/j.issn.1001-9081.2021040620
雷露露1,2, 周颖玥1,2(), 李驰1,2, 王欣宇1,2, 赵家琦1,2
收稿日期:
2021-04-20
修回日期:
2021-07-01
接受日期:
2021-07-20
发布日期:
2022-06-22
出版日期:
2022-06-10
通讯作者:
周颖玥
作者简介:
雷露露(1997—),女,四川广安人,硕士研究生,主要研究方向:图像恢复基金资助:
Lulu LEI1,2, Yingyue ZHOU1,2(), Chi LI1,2, Xinyu WANG1,2, Jiaqi ZHAO1,2
Received:
2021-04-20
Revised:
2021-07-01
Accepted:
2021-07-20
Online:
2022-06-22
Published:
2022-06-10
Contact:
Yingyue ZHOU
About author:
LEI Lulu,born in 1997,M. S. candidate. Her research interests include image restoration.Supported by:
摘要:
超声成像因其便捷、廉价、无辐射等优点被广泛应用于临床诊断中,然而图像中的斑点噪声可能对临床诊断或后续图像分析产生不利影响。作为一种典型的去噪技术,在利用非局部平均滤波(NLMF)对超声图像进行去斑时,会存在时耗高、滤波参数不易设置等不足,因此,提出一种多尺度快速非局部平均滤波(MF-NLMF)算法用来去除超声图像的斑点噪声。首先提出快速非局部平均滤波(F-NLMF)算法,利用互相关滤波技术减少运算时耗;接着设置多种窗口参数获得多幅去斑结果,而模型参数值可根据窗口尺寸自适应调节;最后将多幅去斑结果进行融合得到最终的去斑图像。实验结果表明:在相同实验条件下,与传统NLMF算法相比,F-NLMF算法的运算时间至少减少了96.04%;而MF-NLMF算法与迭代贝叶斯非局部均值滤波(IBNLMF)等算法相比,去斑图像的峰值信噪比(PSNR)值、特征相似度测度(FSIM)值、对比度噪声比(CNR)和信噪比(SNR)分别提高了0.73 dB、0.011、0.000 5、0.001 6以上。
中图分类号:
雷露露, 周颖玥, 李驰, 王欣宇, 赵家琦. 基于多尺度快速非局部平均滤波的超声图像去斑算法[J]. 计算机应用, 2022, 42(6): 1950-1956.
Lulu LEI, Yingyue ZHOU, Chi LI, Xinyu WANG, Jiaqi ZHAO. Speckle removal algorithm for ultrasonic image based on multi-scale fast non-local means filtering[J]. Journal of Computer Applications, 2022, 42(6): 1950-1956.
噪声 强度 | 局部图像1 | 局部图像2 | ||||
---|---|---|---|---|---|---|
5 | 19.98 | 37.07 | 61.17 | 12.68 | 29.55 | 76.07 |
15 | 111.80 | 208.40 | 397.20 | 96.87 | 245.50 | 447.30 |
25 | 337.00 | 829.40 | 1 430.00 | 283.30 | 520.80 | 953.90 |
表1 不同图像块尺寸下的相似距离d值
Tab. 1 Similarity distance d values for different image block sizes
噪声 强度 | 局部图像1 | 局部图像2 | ||||
---|---|---|---|---|---|---|
5 | 19.98 | 37.07 | 61.17 | 12.68 | 29.55 | 76.07 |
15 | 111.80 | 208.40 | 397.20 | 96.87 | 245.50 | 447.30 |
25 | 337.00 | 829.40 | 1 430.00 | 283.30 | 520.80 | 953.90 |
匹配区域 | 搜索区域 | 算法的运行时间/s | NLMF与F-NLMF运行时间比 | IBNLMF与F-NLMF运行时间比 | ||
---|---|---|---|---|---|---|
NLMF | IBNLMF | F-NLMF | ||||
5×5 | 13×13 | 45.19 | 3.12 | 1.79 | 25.25 | 1.74 |
5×5 | 73×73 | 1 202.39 | 37.61 | 7.75 | 155.15 | 4.85 |
7×7 | 13×13 | 48.81 | 3.34 | 1.85 | 26.38 | 1.80 |
7×7 | 73×73 | 1 841.00 | 38.70 | 8.53 | 214.82 | 4.52 |
9×9 | 13×13 | 65.00 | 3.60 | 1.98 | 32.82 | 1.82 |
9×9 | 73×73 | 2 040.80 | 39.96 | 9.08 | 226.67 | 4.40 |
表2 不同算法对带斑点噪声的“头部”幻影图像的去斑速度比较
Tab. 2 Comparison of despeckling speed of different algorithms to “head” phantom image with speckle noise
匹配区域 | 搜索区域 | 算法的运行时间/s | NLMF与F-NLMF运行时间比 | IBNLMF与F-NLMF运行时间比 | ||
---|---|---|---|---|---|---|
NLMF | IBNLMF | F-NLMF | ||||
5×5 | 13×13 | 45.19 | 3.12 | 1.79 | 25.25 | 1.74 |
5×5 | 73×73 | 1 202.39 | 37.61 | 7.75 | 155.15 | 4.85 |
7×7 | 13×13 | 48.81 | 3.34 | 1.85 | 26.38 | 1.80 |
7×7 | 73×73 | 1 841.00 | 38.70 | 8.53 | 214.82 | 4.52 |
9×9 | 13×13 | 65.00 | 3.60 | 1.98 | 32.82 | 1.82 |
9×9 | 73×73 | 2 040.80 | 39.96 | 9.08 | 226.67 | 4.40 |
算法 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | FSIM | PSNR/dB | FSIM | PSNR/dB | FSIM | PSNR/dB | FSIM | PSNR/dB | FSIM | |
斑点图像 | 33.55 | 0.813 3 | 27.45 | 0.721 3 | 23.72 | 0.660 0 | 21.50 | 0.625 5 | 19.94 | 0.604 2 |
SARD | 31.53 | 0.974 3 | 29.93 | 0.941 7 | 27.07 | 0.814 2 | 24.69 | 0.739 1 | 22.85 | 0.689 4 |
SRBF | 25.45 | 0.863 1 | 24.72 | 0.838 7 | 23.31 | 0.812 3 | 23.01 | 0.799 0 | 22.31 | 0.790 9 |
TBNLMF | 38.88 | 0.957 4 | 32.66 | 0.894 6 | 28.66 | 0.855 5 | 25.40 | 0.827 1 | 22.07 | 0.796 7 |
OBNLMF | 38.74 | 0.945 8 | 32.42 | 0.872 7 | 28.33 | 0.801 9 | 25.41 | 0.737 8 | 23.14 | 0.701 2 |
WRNLMF | 39.89 | 0.967 3 | 33.66 | 0.918 6 | 30.18 | 0.885 5 | 28.13 | 0.851 7 | 25.82 | 0.830 5 |
IBNLMF | 40.39 | 0.974 9 | 34.16 | 0.942 4 | 30.42 | 0.920 6 | 28.14 | 0.859 4 | 25.64 | 0.851 8 |
MF-NLMF | 41.20 | 0.985 9 | 35.70 | 0.968 2 | 31.86 | 0.944 0 | 29.27 | 0.940 3 | 26.55 | 0.930 8 |
表3 不同算法对带斑点噪声的“头部”幻影图像进行去斑的结果
Tab.3 Despeckling results obtained by different algorithms to “head” phantom image with speckle noise
算法 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | FSIM | PSNR/dB | FSIM | PSNR/dB | FSIM | PSNR/dB | FSIM | PSNR/dB | FSIM | |
斑点图像 | 33.55 | 0.813 3 | 27.45 | 0.721 3 | 23.72 | 0.660 0 | 21.50 | 0.625 5 | 19.94 | 0.604 2 |
SARD | 31.53 | 0.974 3 | 29.93 | 0.941 7 | 27.07 | 0.814 2 | 24.69 | 0.739 1 | 22.85 | 0.689 4 |
SRBF | 25.45 | 0.863 1 | 24.72 | 0.838 7 | 23.31 | 0.812 3 | 23.01 | 0.799 0 | 22.31 | 0.790 9 |
TBNLMF | 38.88 | 0.957 4 | 32.66 | 0.894 6 | 28.66 | 0.855 5 | 25.40 | 0.827 1 | 22.07 | 0.796 7 |
OBNLMF | 38.74 | 0.945 8 | 32.42 | 0.872 7 | 28.33 | 0.801 9 | 25.41 | 0.737 8 | 23.14 | 0.701 2 |
WRNLMF | 39.89 | 0.967 3 | 33.66 | 0.918 6 | 30.18 | 0.885 5 | 28.13 | 0.851 7 | 25.82 | 0.830 5 |
IBNLMF | 40.39 | 0.974 9 | 34.16 | 0.942 4 | 30.42 | 0.920 6 | 28.14 | 0.859 4 | 25.64 | 0.851 8 |
MF-NLMF | 41.20 | 0.985 9 | 35.70 | 0.968 2 | 31.86 | 0.944 0 | 29.27 | 0.940 3 | 26.55 | 0.930 8 |
算法 | 第一个区域 | 第二个区域 | 第三个区域 | |||
---|---|---|---|---|---|---|
CNR | SNR | CNR | SNR | CNR | SNR | |
噪声图像 | 0.046 8 | 0.112 4 | 0.019 0 | 0.059 3 | 0.012 0 | 0.156 3 |
SARD | 0.112 8 | 0.275 6 | 0.026 7 | 0.082 4 | 0.047 6 | 0.590 1 |
SRBF | 0.093 3 | 0.238 1 | 0.023 9 | 0.074 1 | 0.022 6 | 0.313 4 |
TBNLMF | 0.186 6 | 0.512 8 | 0.028 7 | 0.084 8 | 0.078 2 | 0.942 0 |
OBNLMF | 0.079 4 | 0.200 4 | 0.026 0 | 0.080 8 | 0.057 4 | 0.658 5 |
WRNLMF | 0.384 1 | 1.080 8 | 0.033 5 | 0.097 8 | 0.164 2 | 2.275 3 |
IBNLM | 0.396 2 | 1.344 6 | 0.038 6 | 0.117 1 | 0.222 6 | 3.775 9 |
MF-NLMF | 0.420 2 | 1.472 1 | 0.039 1 | 0.118 7 | 0.240 7 | 3.784 0 |
表4 不同算法对Field Ⅱ仿真“囊肿”超声图像的去斑定量结果 ( dB)
Tab. 4 Despeckling quantitative results of different despeckling algorithms for Field Ⅱ simulated “cyst” ultrasound image unit: dB
算法 | 第一个区域 | 第二个区域 | 第三个区域 | |||
---|---|---|---|---|---|---|
CNR | SNR | CNR | SNR | CNR | SNR | |
噪声图像 | 0.046 8 | 0.112 4 | 0.019 0 | 0.059 3 | 0.012 0 | 0.156 3 |
SARD | 0.112 8 | 0.275 6 | 0.026 7 | 0.082 4 | 0.047 6 | 0.590 1 |
SRBF | 0.093 3 | 0.238 1 | 0.023 9 | 0.074 1 | 0.022 6 | 0.313 4 |
TBNLMF | 0.186 6 | 0.512 8 | 0.028 7 | 0.084 8 | 0.078 2 | 0.942 0 |
OBNLMF | 0.079 4 | 0.200 4 | 0.026 0 | 0.080 8 | 0.057 4 | 0.658 5 |
WRNLMF | 0.384 1 | 1.080 8 | 0.033 5 | 0.097 8 | 0.164 2 | 2.275 3 |
IBNLM | 0.396 2 | 1.344 6 | 0.038 6 | 0.117 1 | 0.222 6 | 3.775 9 |
MF-NLMF | 0.420 2 | 1.472 1 | 0.039 1 | 0.118 7 | 0.240 7 | 3.784 0 |
1 | 郑渊悦,徐铭恩,王玲. 改进权值非局部均值超声图像去噪[J]. 中国图象图形学报, 2017, 22(6):778-786. 10.11834/jig.160631 |
ZHENG Y Y, XU M E, WANG L. Improved weighted non-local means ultrasonic image denoising algorithm[J]. Journal of Image and Graphics, 2017, 22(6):778-786. 10.11834/jig.160631 | |
2 | 沈民奋,陈婷婷,张琼,等. 医用超声图像散斑去噪方法综述[J]. 中国医疗器械信息, 2013, 19(3):17-22. 10.3969/j.issn.1006-6586.2013.03.003 |
SHEN M F, CHEN T T, ZHANG Q, et al. The review of speckle denoising in medical ultrasound imaging[J]. China Medical Device Information, 2013, 19(3): 17-22. 10.3969/j.issn.1006-6586.2013.03.003 | |
3 | 江勇,张晓玲,师君. 极化SAR改进Lee滤波相干斑抑制研究[J]. 电子科技大学学报, 2009, 38(1):5-8. 10.3969/j.issn.1001-0548.2009.01.002 |
JIANG Y, ZHANG X L, SHI J. Speckle reduction for polarimetric SAR images by improved Lee filter[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(1): 5-8. 10.3969/j.issn.1001-0548.2009.01.002 | |
4 | 杨婧玮,李贺,王智超. 改进Frost算子在SAR图像斑点噪声抑制中的应用[J]. 测绘科学技术学报, 2009, 26(4):280-282, 287. 10.3969/j.issn.1673-6338.2009.04.013 |
YANG J W, LI H, WANG Z C. Application of SAR image de-speckling method based on improved Frost filer[J]. Journal of Geomatics Science and Technology, 2009, 26(4): 280-282, 287. 10.3969/j.issn.1673-6338.2009.04.013 | |
5 | AKL A, TABBARA K, YAACOUB C. An enhanced Kuan filter for suboptimal speckle reduction[C]// Proceedings of the 2nd International Conference on Advances in Computational Tools for Engineering Applications. Piscataway: IEEE, 2012: 91-95. 10.1109/ictea.2012.6462911 |
6 | LOUPAS T, McDICKEN W N, ALLAN P L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[J]. IEEE Transaction on Circuits and Systems, 1989, 36(1):129-135. 10.1109/31.16577 |
7 | MA X S, SHEN H F, ZHANG L P, et al. Adaptive anisotropic diffusion method for polarimetric SAR speckle filtering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1041-1050. 10.1109/jstars.2014.2328332 |
8 | RAMOS-LLORDÉN G, VEGAS-SÁNCHEZ-FERRERO G, MARTÍN-FERNÁNDEZ M, et al. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images[J]. IEEE Transactions on Image Processing, 2015, 24(1): 345-358. 10.1109/tip.2014.2371244 |
9 | PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639. 10.1109/34.56205 |
10 | YU Y J, ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260-1270. 10.1109/tip.2002.804276 |
11 | 付晓薇,杨雪飞,陈芳,等. 一种基于深度学习的自适应医学超声图像去斑方法[J]. 电子与信息学报, 2020, 42(7):1782-1789. 10.11999/JEIT190580 |
FU X W, YANG X F, CHEN F, et al. An adaptive medical ultrasound images despeckling method based on deep learning[J]. Journal of Electronics and Information Technology, 2020, 42(7):1782-1789. 10.11999/JEIT190580 | |
12 | OVIREDDY S, MUTHUSAMY E. Speckle suppressing anisotropic diffusion filter for medical ultrasound image[J]. Ultrasonic Imaging, 2014, 36(2): 112-132. 10.1177/0161734613512200 |
13 | ZHANG J, LIN G K, WU L L, et al. Speckle filtering of medical ultrasonic images using wavelet and guided filter[J]. Ultrasonics, 2016, 65: 177-193. 10.1016/j.ultras.2015.10.005 |
14 | JIANG J, JIANG L W, SANG N. Non-local sparse models for SAR image despeckling[C]// Proceedings of the 2012 International Conference on Computer Vision in Remote Sensing. Piscataway: IEEE, 2012: 230-236. 10.1109/cvrs.2012.6421266 |
15 | ZHANG Y S, ZHAO Y C, JI K F, et al. SAR image despeckling by iterative non-local low-rank constraint[C]// Proceedings of the 2016 Progress in Electromagnetic Research Symposium. Piscataway: IEEE, 2016: 3564-3568. 10.1109/piers.2016.7735372 |
16 | COUPE P, HELLIER P, KERVRANN C, et al. Nonlocal means-based speckle filtering for ultrasound images[J]. IEEE Transactions Image Processing, 2009, 18(10): 2221-2229. 10.1109/tip.2009.2024064 |
17 | SUDEEP P V, PALANISAMY P, RAJAN J, et al. Speckle reduction in medical ultrasound images using an unbiased non-local means method[J]. Biomedical Signal Processing and Control, 2016, 28: 1-8. 10.1016/j.bspc.2016.03.001 |
18 | 刘春明,张相芬,陈武凡. 基于小波的医学超声图像斑点噪声抑制方法[J]. 中国医学物理学杂志, 2006, 23(5): 364-367, 394. 10.3969/j.issn.1005-202X.2006.05.013 |
LIU C M, ZHANG X F, CHEN W F. Wavelet-based method for speckle reduction in medical ultrasound image[J]. Chinese Journal of Medical Physics, 2006, 23(5): 364-367, 394. 10.3969/j.issn.1005-202X.2006.05.013 | |
19 | 方宏道,周颖玥,林茂松. 基于贝叶斯非局部平均滤波的超声图像斑点噪声抑制算法[J]. 计算机应用, 2018, 38(3):848-853, 872. 10.11772/j.issn.1001-9081.2017071780 |
FANG H D, ZHOU Y Y, LIN M S. Speckle suppression algorithm for ultrasound image based on Bayesian nonlocal means filtering[J]. Journal of Computer Applications, 2018, 38(3):848-853, 872. 10.11772/j.issn.1001-9081.2017071780 | |
20 | 胡静波. 改进的中值滤波去噪算法分析[J]. 信息技术, 2011, 35(8):32-33, 36. 10.3969/j.issn.1009-2552.2011.08.010 |
HU J B. Analysis of improved median filtering de-noising algorithm[J]. Information Technology, 2011, 35(8):32-33, 36. 10.3969/j.issn.1009-2552.2011.08.010 | |
21 | ZHAN Y, DING M Y, WU L X, et al. Nonlocal means method using weight refining for despeckling of ultrasound images[J]. Signal Processing, 2014, 103: 201-213. 10.1016/j.sigpro.2013.12.019 |
22 | ZHOU Y Y, ZANG H B, XU S, et al. An iterative speckle filtering algorithm for ultrasound images based on Bayesian nonlocal means filter model[J]. Biomedical Signal Processing and Control, 2019, 48: 104-117. 10.1016/j.bspc.2018.09.011 |
23 | 邢笑笑,王海龙,李健,等. 渐近非局部平均图像去噪算法[J]. 自动化学报, 2020, 46(9):1952-1960. 10.16383/j.aas.c190294 |
XING X X, WANG H L, LI J, et al. Asymptotically non-local average image denoising algorithm[J]. Acta Automatica Sinica, 2020, 46(9):1952-1960. 10.16383/j.aas.c190294 | |
24 | JENSEN J A. Simulation of advanced ultrasound systems using Field Ⅱ[C]// Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro. Piscataway: IEEE, 2004: 636-639. |
25 | Field Ⅱ simulation program [EB/OL]. (2012-04-30) [2021-02-19]. . 10.1007/s10773-011-0954-0 |
26 | 张中兴,刘慧,郭强,等. 结合非局部低秩先验的图像超分辨重建概率模型[J]. 计算机辅助设计与图形学学报, 2021, 33(1):142-152. 10.3724/SP.J.1089.2021.18389 |
ZHANG Z X, LIU H, GUO Q, et al. Super-resolution reconstruction using probability model combined with nonlocal low-rank prior[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(1):142-152. 10.3724/SP.J.1089.2021.18389 |
[1] | 姚光磊, 熊菊霞, 杨国武. 基于神经网络优化的花朵授粉算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2829-2837. |
[2] | 赵秦壮, 谭红叶. 基于自适应阈值学习的时序因果推断方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2660-2666. |
[3] | 戎妍, 刘嘉雯, 李馨蕾. 面向学生课堂情感计算的自适应混合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2919-2930. |
[4] | 方介泼, 陶重犇. 应对零日攻击的混合车联网入侵检测系统[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2763-2769. |
[5] | 陈彤, 杨丰玉, 熊宇, 严荭, 邱福星. 基于多尺度频率通道注意力融合的声纹库构建方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2407-2413. |
[6] | 杨乐, 张达敏, 何庆, 邓佳欣, 左锋琴. 改进猎人猎物优化算法在WSN覆盖中的应用[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2506-2513. |
[7] | 徐航, 杨智, 陈性元, 韩冰, 杜学绘. 基于自适应敏感区域变异的覆盖引导模糊测试[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2528-2535. |
[8] | 李晨倩, 刘俊. 基于半监督和多尺度级联注意力的超声颈动脉斑块分割方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2604-2610. |
[9] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[10] | 唐媛, 陈艳平, 扈应, 黄瑞章, 秦永彬. 基于多尺度混合注意力卷积神经网络的关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2011-2017. |
[11] | 施赛龙, 方智文. 基于多尺度聚合和共享注意力的注视估计模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2047-2054. |
[12] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[13] | 李伟, 张晓蓉, 陈鹏, 李清, 张长青. 基于正态逆伽马分布的多尺度融合人群计数算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2243-2249. |
[14] | 吴锦富, 柳毅. 基于随机噪声和自适应步长的快速对抗训练方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1807-1815. |
[15] | 王美, 苏雪松, 刘佳, 殷若南, 黄珊. 时频域多尺度交叉注意力融合的时间序列分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1842-1847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||