《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (6): 1676-1686.DOI: 10.11772/j.issn.1001-9081.2022060865
所属专题: 综述; CCF第37届中国计算机应用大会 (CCF NCCA 2022)
• CCF第37届中国计算机应用大会 (CCF NCCA 2022) • 上一篇 下一篇
收稿日期:
2022-06-16
修回日期:
2022-07-15
接受日期:
2022-07-27
发布日期:
2022-08-15
出版日期:
2023-06-10
通讯作者:
韩萌
作者简介:
高智慧(1996—),女,山东临沂人,硕士研究生,主要研究方向:大数据挖掘基金资助:
Zhihui GAO, Meng HAN(), Shujuan LIU, Ang LI, Dongliang MU
Received:
2022-06-16
Revised:
2022-07-15
Accepted:
2022-07-27
Online:
2022-08-15
Published:
2023-06-10
Contact:
Meng HAN
About author:
GAO Zhihui, born in 1996, M. S. candidate. Her research interests include big data mining.Supported by:
摘要:
高效用项集挖掘(HUIM)能够挖掘事务数据库中具有重要意义的项集,从而帮助用户更好地进行决策。针对智能优化算法的应用能够显著提高海量数据中高效用项集的挖掘效率这一现状,对基于智能优化算法的HUIM方法进行了综述。首先,以智能优化算法的类别为角度,从基于群智能优化、基于进化以及基于其他智能优化算法的方法这3个方面对基于智能优化算法的HUIM方法进行了详细的分析与总结。同时,从粒子更新方式的角度对基于粒子群优化(PSO)的HUIM方法进行了详细梳理,包括基于传统更新策略、基于sigmoid函数、基于贪心、基于轮盘赌以及基于集合的方法。另外,从种群更新方法、对比算法、参数设置、优缺点等角度对比分析了基于群智能优化算法的HUIM方法。然后,从遗传和仿生两个方面对基于进化的HUIM方法进行总结概括。最后,针对目前基于智能优化算法的HUIM方法所存在的问题,提出了下一步的研究方向。
中图分类号:
高智慧, 韩萌, 刘淑娟, 李昂, 穆栋梁. 基于智能优化算法的高效用项集挖掘方法综述[J]. 计算机应用, 2023, 43(6): 1676-1686.
Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm[J]. Journal of Computer Applications, 2023, 43(6): 1676-1686.
项 | 外部效用 | 事务加权效用 |
---|---|---|
a | 9 | 266 |
b | 7 | 262 |
c | 6 | 342 |
d | 3 | 336 |
e | 1 | 195 |
表1 效用列表
Tab. 1 Utility list
项 | 外部效用 | 事务加权效用 |
---|---|---|
a | 9 | 266 |
b | 7 | 262 |
c | 6 | 342 |
d | 3 | 336 |
e | 1 | 195 |
标识符 | 事务 | 各项对应的数量 | 事务效用 |
---|---|---|---|
T1 | {a,b,d} | {5,3,1} | 67 |
T2 | {b,c,d,e} | {7,2,6,1} | 70 |
T3 | {a,b,c,d,e} | {9,3,2,5,2} | 125 |
T4 | {b,c} | {7,4} | 73 |
T5 | {a,c,d} | {4,5,8} | 74 |
表2 事务列表
Tab. 2 Transaction list
标识符 | 事务 | 各项对应的数量 | 事务效用 |
---|---|---|---|
T1 | {a,b,d} | {5,3,1} | 67 |
T2 | {b,c,d,e} | {7,2,6,1} | 70 |
T3 | {a,b,c,d,e} | {9,3,2,5,2} | 125 |
T4 | {b,c} | {7,4} | 73 |
T5 | {a,c,d} | {4,5,8} | 74 |
数据集 | 事务数 | 项目数 | 事务平均长度 | 密度/% | 类型 |
---|---|---|---|---|---|
chess | 3 196 | 75 | 37.00 | 49.33 | 密集 |
connect | 67 557 | 129 | 43.00 | 33.33 | 密集 |
mushrooms | 8 416 | 119 | 23.00 | 19.33 | 密集 |
accidents | 340 183 | 468 | 33.80 | 7.22 | 密集 |
retail | 88 162 | 16 470 | 10.30 | 0.06 | 稀疏 |
foodmart | 1 112 949 | 46 086 | 7.23 | 0.02 | 稀疏 |
表3 数据集参数
Tab. 3 Parameters of datasets
数据集 | 事务数 | 项目数 | 事务平均长度 | 密度/% | 类型 |
---|---|---|---|---|---|
chess | 3 196 | 75 | 37.00 | 49.33 | 密集 |
connect | 67 557 | 129 | 43.00 | 33.33 | 密集 |
mushrooms | 8 416 | 119 | 23.00 | 19.33 | 密集 |
accidents | 340 183 | 468 | 33.80 | 7.22 | 密集 |
retail | 88 162 | 16 470 | 10.30 | 0.06 | 稀疏 |
foodmart | 1 112 949 | 46 086 | 7.23 | 0.02 | 稀疏 |
算法名称 | 相应 算法 | 更新 策略 | 剪枝策略 | 对比算法 | 数据集 | 参数 设置 | 优缺点 |
---|---|---|---|---|---|---|---|
WARM SWARM | 传统 更新 策略 | 无 | Apriori | T5L10I10K、mushroom、 Dermatology、Adult、 Zoo、TeachingEval、 SoybeanLarge | ω=1 c1=c2=1 | 优点:挖掘速度快 缺点:进行权重拟合有一定的开销 | |
sigmoid 函数 | 无 | HUPEUMU-GRAM | chess、connect、 mushroom、accidents | ω=0.9 c1=c2=2 ND | |||
PSO | sigmoid 函数 | 有 | HUPEUMU-GRAM | chess、mushroom、 connect、accidents、 foodmart、retail | ω=0.9 c1=c2=2 ND | ||
HUIF-PSO | 贪心 | 无 | HUPEUMU-GRAM、 HUIM-BPSO、IHUP、 UP-Growth | chess、connect、 mushroom、 accidents_10% | ND | 优点:运行速度快 缺点:需要手动设置阈值, | |
轮盘赌 | 无 | HUIM-BPSO、 HUPE-GRAM | chess、mushroom、 retail、foodmart | ND | |||
轮盘赌 | 无 | HAUI-Miner、 EHAUPM | connect、chess、 accidents_10%、 T25N100D50K | ND | |||
轮盘赌 | 无 | Bio-HUIF-GA、 Bio-HUIF-PSO、 Bio-HUIF-BA | chess、mushroom、 foodmart、connect、 accident_10% | c1=c2=2 | |||
基于 集合 | 无 | HUIM-BPSOsig、 HUIM-BPSO | chess、 connect、 mushroom、 accidents_10% | ω=c1=c2=1 ND | |||
基于 路由图 | 有 | HUPEUMU-GRAM、 HUIM-BPSO、 HUI-Miner、EFIM | chess、connect、retail、 foodmart、mushroom、 accidents_10% | ND | |||
传统 更新 策略 | 有 | HURI | chess、mushroom、 retail、foodmart | ||||
有向图 | 无 | CHUD、 CHUI-Miner | chess、retail、 foodmart、BMS、 mushroom、 chainstore | ND | |||
位图 | 有 | HUPEUMU-GARM、 HUIM-BPSOsig、 HUIM-BPSO | chess、 connect、 mushroom、 accidents_10% | ND | |||
BA | 传统 更新 策略 | 无 | HUPEUMU-GRAM、 HUIM-BPSO、 IHUP、UP-Growth | chess、connect、 mushroom、 accidents_10% | ND | ||
BGWO | 布尔 运算 | 无 | UP-Growth、 HUPEUMU-GARM、 Bio-HUIF-BA、 Bio-HUIF-GA、 HUIM-BPSO | chess、 connect、 mushroom、 accidents | ND | ||
AF | 传统 更新 策略 | 无 | HUPEUMU-GARM、 HUIM-BPSOsig | chess、connect、 mushroom、 accidents_10% | ND |
表4 基于群智能优化算法的HUIM方法总结
Tab. 4 Summary of HUIM methods based on swarm intelligence optimization algorithms
算法名称 | 相应 算法 | 更新 策略 | 剪枝策略 | 对比算法 | 数据集 | 参数 设置 | 优缺点 |
---|---|---|---|---|---|---|---|
WARM SWARM | 传统 更新 策略 | 无 | Apriori | T5L10I10K、mushroom、 Dermatology、Adult、 Zoo、TeachingEval、 SoybeanLarge | ω=1 c1=c2=1 | 优点:挖掘速度快 缺点:进行权重拟合有一定的开销 | |
sigmoid 函数 | 无 | HUPEUMU-GRAM | chess、connect、 mushroom、accidents | ω=0.9 c1=c2=2 ND | |||
PSO | sigmoid 函数 | 有 | HUPEUMU-GRAM | chess、mushroom、 connect、accidents、 foodmart、retail | ω=0.9 c1=c2=2 ND | ||
HUIF-PSO | 贪心 | 无 | HUPEUMU-GRAM、 HUIM-BPSO、IHUP、 UP-Growth | chess、connect、 mushroom、 accidents_10% | ND | 优点:运行速度快 缺点:需要手动设置阈值, | |
轮盘赌 | 无 | HUIM-BPSO、 HUPE-GRAM | chess、mushroom、 retail、foodmart | ND | |||
轮盘赌 | 无 | HAUI-Miner、 EHAUPM | connect、chess、 accidents_10%、 T25N100D50K | ND | |||
轮盘赌 | 无 | Bio-HUIF-GA、 Bio-HUIF-PSO、 Bio-HUIF-BA | chess、mushroom、 foodmart、connect、 accident_10% | c1=c2=2 | |||
基于 集合 | 无 | HUIM-BPSOsig、 HUIM-BPSO | chess、 connect、 mushroom、 accidents_10% | ω=c1=c2=1 ND | |||
基于 路由图 | 有 | HUPEUMU-GRAM、 HUIM-BPSO、 HUI-Miner、EFIM | chess、connect、retail、 foodmart、mushroom、 accidents_10% | ND | |||
传统 更新 策略 | 有 | HURI | chess、mushroom、 retail、foodmart | ||||
有向图 | 无 | CHUD、 CHUI-Miner | chess、retail、 foodmart、BMS、 mushroom、 chainstore | ND | |||
位图 | 有 | HUPEUMU-GARM、 HUIM-BPSOsig、 HUIM-BPSO | chess、 connect、 mushroom、 accidents_10% | ND | |||
BA | 传统 更新 策略 | 无 | HUPEUMU-GRAM、 HUIM-BPSO、 IHUP、UP-Growth | chess、connect、 mushroom、 accidents_10% | ND | ||
BGWO | 布尔 运算 | 无 | UP-Growth、 HUPEUMU-GARM、 Bio-HUIF-BA、 Bio-HUIF-GA、 HUIM-BPSO | chess、 connect、 mushroom、 accidents | ND | ||
AF | 传统 更新 策略 | 无 | HUPEUMU-GARM、 HUIM-BPSOsig | chess、connect、 mushroom、 accidents_10% | ND |
1 | NOUIOUA M, FOURNIER-VIGER P, WU C W, et al. FHUQI-Miner: fast high utility quantitative itemset mining[J]. Applied Intelligence, 2021, 51(10): 6785-6809. 10.1007/s10489-021-02204-w |
2 | AHMED U, SRIVASTAVA G, LIN J C W. A federated learning approach to frequent itemset mining in cyber-physical systems[J]. Journal of Network and Systems Management, 2021, 29(4): No.42. 10.1007/s10922-021-09609-5 |
3 | HIDOURI A, JABBOUR S, RADDAOUI B, et al. Mining closed high utility itemsets based on propositional satisfiability[J]. Data and Knowledge Engineering, 2021, 136: No.101927. 10.1016/j.datak.2021.101927 |
4 | NOUIOUA M, FOURNIER-VIGER P, GAN W S, et al. TKQ: top-k quantitative high utility itemset mining[C]// Proceedings of the 2022 International Conference on Advanced Data Mining and Applications, LNCS 13088. Cham: Springer, 2022: 16-28. |
5 | SOHRABI M K. An efficient projection-based method for high utility itemset mining using a novel pruning approach on the utility matrix[J]. Knowledge and Information Systems, 2020, 62(11): 4141-4167. 10.1007/s10115-020-01485-w |
6 | ZIDA S, FOURNIER-VIGER P, LIN J C W, et al. EFIM: a fast and memory efficient algorithm for high-utility itemset mining[J]. Knowledge and Information Systems, 2017, 51(2): 595-625. 10.1007/s10115-016-0986-0 |
7 | FOURNIER-VIGER P, WU C W, ZIDA S, et al. FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning[C]// Proceedings of the 2014 International Symposium on Methodologies for Intelligent Systems, LNCS 8502. Cham: Springer, 2014: 83-92. |
8 | LIU M C, QU J F. Mining high utility itemsets without candidate generation[C]// Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 55-64. 10.1145/2396761.2396773 |
9 | KRISHNAMOORTHY S. Pruning strategies for mining high utility itemsets[J]. Expert Systems with Applications, 2015, 42(5): 2371-2381. 10.1016/j.eswa.2014.11.001 |
10 | DAWAR S, GOYAL V, BERA D. A hybrid framework for mining high-utility itemsets in a sparse transaction database[J]. Applied Intelligence, 2017, 47(3): 809-827. 10.1007/s10489-017-0932-1 |
11 | LIU Y, LIAO W K, CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C]// Proceedings of the 2005 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 3518. Berlin: Springer, 2005: 689-695. |
12 | TSENG V S, WU C W, FOURNIER-VIGER P, et al. Efficient algorithms for mining top-k high utility itemsets[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 54-67. 10.1109/tkde.2015.2458860 |
13 | NAWAZ M S, FOURNIER-VIGER P, YUN U, et al. Mining high utility itemsets with hill climbing and simulated annealing[J]. ACM Transactions on Management Information Systems, 2021, 13(1): No.4. 10.1145/3462636 |
14 | VENTURA S, LUNA J M. Pattern Mining with Evolutionary Algorithms [M]. Cham: Springer, 2016: 63-69. 10.1007/978-3-319-33858-3_4 |
15 | LUNA J M, PECHENIZKIY M, DEL JESUS M J, et al. Mining context-aware association rules using grammar-based genetic programming[J]. IEEE Transactions on Cybernetics, 2018, 48(11): 3030-3044. 10.1109/tcyb.2017.2750919 |
16 | YU X J, GEN M. Introduction to Evolutionary Algorithms, DECENGIN [M]. London: Springer, 2010: 3-9. 10.1007/978-1-84996-129-5 |
17 | KANNIMUTHU S, PREMALATHA K. Discovery of high utility itemsets using genetic algorithm with ranked mutation [J]. Applied Artificial Intelligence, 2014, 28(4): 337-359. 10.1080/08839514.2014.891839 |
18 | LIN J C W, YANG L, FOURNIER-VIGER P, et al. A binary PSO approach to mine high-utility itemsets[J]. Soft Computing, 2017, 21(17): 5103-5121. 10.1007/s00500-016-2106-1 |
19 | LIN J C W, YANG L, FOURNIER-VIGER P, et al. A swarm-based approach to mine high-utility itemsets[C]// Proceedings of the 2015 International Conference on Multidisciplinary Social Networks Research, CCIS 540. Berlin: Springer, 2015: 572-581. 10.1007/978-3-662-48319-0_48 |
20 | LIN J C W, YANG L, FOURNIER-VIGER P, et al. Mining high-utility itemsets based on particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2016, 55: 320-330. 10.1016/j.engappai.2016.07.006 |
21 | SONG W, HUANG C M. Discovering high utility itemsets based on the artificial bee colony algorithm[C]// Proceedings of the 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 10939. Cham: Springer, 2018: 3-14. |
22 | SONG W, LI J Y, HUANG C M. Artificial fish swarm algorithm for mining high utility itemsets[C]// Proceedings of the 2021 International Conference on Swarm Intelligence, LNCS 12690. Cham: Springer, 2021: 407-419. |
23 | SONG W, HUANG C M. Mining high average-utility itemsets based on particle swarm optimization[J]. Data Science and Pattern Recognition, 2020, 4(2): 19-32. |
24 | LIN J C W, DJENOURI Y, SRIVASTAVA G, et al. A predictive GA-based model for closed high-utility itemset mining[J]. Applied Soft Computing, 2021, 108: No.107422. 10.1016/j.asoc.2021.107422 |
25 | SONG W, ZHENG C L, HUANG C M, et al. Heuristically mining the top-k high-utility itemsets with cross-entropy optimization[J]. Applied Intelligence, 2022, 52(15): 17026-17041. 10.1007/s10489-021-02576-z |
26 | LOGESWARAN K, ANDAL R K S, EZHILMATHI S T, et al. A survey on metaheuristic nature inspired computations used for mining of association rule, frequent itemset and high utility itemset[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1055: No.012103. 10.1088/1757-899x/1055/1/012103 |
27 | DJENOURI Y, FOURNIER-VIGER P, BELHADI A, et al. Metaheuristics for frequent and high-utility itemset mining[M]// FOURNIER-VIGER P, LIN J C W, NKAMBOU R, et al. High-Utility Pattern Mining: Theory, Algorithms and Applications, SBD 51. Cham: Springer, 2019: 261-278. 10.1007/978-3-030-04921-8_10 |
28 | 张妮,韩萌,王乐,等. 基于正负效用划分的高效用模式挖掘方法综述[J]. 计算机应用, 2022, 42(4):999-1010. |
ZHANG N, HAN M, WANG L, et al. Survey of high utility pattern mining methods based on positive and negative utility division [J]. Journal of Computer Applications, 2022, 42(4): 999-1010. | |
29 | 单芝慧,韩萌,韩强. 动态数据上的高效用模式挖掘综述[J]. 计算机应用, 2022, 42(1):94-108. 10.11772/j.issn.1001-9081.2021071290 |
SHAN Z H, HAN M, HAN Q. Survey of high utility pattern mining on dynamic data[J]. Journal of Computer Applications, 2022, 42(1): 94-108. 10.11772/j.issn.1001-9081.2021071290 | |
30 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995, 4: 1942-1948. |
31 | EBERHART R, KENNEDY J. A new optimizer using particle swarm theory [C]// Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway: IEEE, 1995: 39-43. 10.1109/mhs.1995.494249 |
32 | GHOSH S, BISWAS S, SARKAR D, et al. Mining frequent itemsets using genetic algorithm[J]. International Journal of Artificial Intelligence and Applications, 2010, 1(4): 133-143. 10.5121/ijaia.2010.1411 |
33 | PEARS R, KOH Y S. Weighted association rule mining using particle swarm optimization[C]// Proceedings of the 2011 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 7104. Berlin: Springer, 2012: 327-338. |
34 | SIVAMATHI C, VIJAYARANI S. Mining high utility itemsets using Shuffled Complex Evolution of Particle Swarm Optimization (SCE-PSO) optimization algorithm[C]// Proceedings of the 2017 International Conference on Inventive Computing and Informatics. Piscataway: IEEE, 2017: 640-644. 10.1109/icici.2017.8365213 |
35 | KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C]// Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics: Computational Cybernetics and Simulation- Volume 5. Piscataway: IEEE, 1997: 4104-4108. 10.1109/icsmc.1997.625706 |
36 | GUNAWAN R, WINARKO E, PULUNGAN R. A BPSO-based method for high-utility itemset mining without minimum utility threshold[J]. Knowledge-Based Systems, 2020, 190: No.105164. 10.1016/j.knosys.2019.105164 |
37 | 靳晓乐,刘峡壁,马骁. 基于双重二元粒子群优化的高效用项集挖掘算法[J]. 计算机工程, 2018, 44(12):202-207, 214. |
JIN X L, LIU X B, MA X. High-utility itemsets mining algorithm based on double binary particle swarm optimization[J]. Computer Engineering, 2018, 44(12):202-207, 214. | |
38 | SONG W, HUANG C M. Mining high utility itemsets using bio-inspired algorithms: a diverse optimal value framework[J]. IEEE Access, 2018, 6: 19568-19582. 10.1109/access.2018.2819162 |
39 | TSENG V S, WU C W, SHIE B E, et al. UP-Growth: an efficient algorithm for high utility itemset mining[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 253-262. 10.1145/1835804.1835839 |
40 | 王常武,尹松林,刘文远,等. HUIM-IPSO:一个改进的粒子群优化高效用项集挖掘算法[J]. 小型微型计算机系统, 2020, 41(5):1084-1090. 10.3969/j.issn.1000-1220.2020.05.031 |
WANG C W, YIN S L, LIU W Y, et al. High utility itemset mining algorithm based on improved particle swarm optimization[J]. Journal of Chinese Computer Systems, 2020, 41(5): 1084-1090. 10.3969/j.issn.1000-1220.2020.05.031 | |
41 | CHEN W N, ZHANG J, CHUNG H S H, et al. A novel set-based particle swarm optimization method for discrete optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278-300. 10.1109/tevc.2009.2030331 |
42 | SONG W, LI J Y. Discovering high utility itemsets using set-based particle swarm optimization[C]// Proceedings of the 2020 International Conference on Advanced Data Mining and Applications, LNCS 12447. Cham: Springer, 2020: 38-53. |
43 | WU J M T, ZHAN J, LIN J C W. Mining of high-utility itemsets by ACO algorithm[C]// Proceedings of the 3rd Multidisciplinary International Social Networks Conference/ 7th ASE International Conference on Data Science/ 5th ASE International Conference on Social Informatics . New York: ACM, 2016: No.44. 10.1145/2955129.2955179 |
44 | WU J M T, ZHAN J, LIN J C W. An ACO-based approach to mine high-utility itemsets[J]. Knowledge-Based Systems, 2017, 116: 102-113. 10.1016/j.knosys.2016.10.027 |
45 | SEIDLOVA R, POŽIVIL J, SEIDL J. Marketing and business intelligence with help of ant colony algorithm[J]. Journal of Strategic Marketing, 2019, 27(5): 451-463. 10.1080/0965254x.2018.1430058 |
46 | ARUNKUMAR M S, SURESH P, GUNAVATHI C. High utility infrequent itemset mining using a customized ant colony algorithm [J]. International Journal of Parallel Programming, 2020, 48(5): 833-849. 10.1007/s10766-018-0621-7 |
47 | PRAMANIK S, GOSWAMI A. Discovery of closed high utility itemsets using a fast nature-inspired ant colony algorithm[J]. Applied Intelligence, 2022, 52(8): 8839-8855. 10.1007/s10489-021-02922-1 |
48 | EMARY E, ZAWBAA H M, HASSANIEN A E. Binary grey wolf optimization approaches for feature selection[J]. Neurocomputing, 2016, 172: 371-381. 10.1016/j.neucom.2015.06.083 |
49 | PAZHANIRAJA N, SOUNTHARRAJAN S, SATHIS KUMAR B. High utility itemset mining: a Boolean operators-based modified grey wolf optimization algorithm[J]. Soft Computing, 2020, 24(21): 16691-16704. 10.1007/s00500-020-05123-z |
50 | 孙蕊,韩萌,张春砚,等. 含负项top-k高效用项集挖掘算法[J]. 计算机应用, 2021, 41(8):2386-2395. |
SUN R, HAN M, ZHANG C Y, et al. Algorithm for mining top-k high utility itemsets with negative items[J]. Journal of Computer Applications, 2021, 41(8): 2386-2395. | |
51 | 张亚玲,王婷,王尚平. 增量式隐私保护频繁模式挖掘算法[J]. 计算机应用, 2018, 38(1):176-181. 10.11772/j.issn.1001-9081.2017061617 |
ZHANG Y L, WANG T, WANG S P. Incremental frequent pattern mining algorithm for privacy-preserving[J]. Journal of Computer Applications, 2018, 38(1): 176-181. 10.11772/j.issn.1001-9081.2017061617 | |
52 | LIN J C W, GAN W S, FOURNIER-VIGER P, et al. High utility-itemset mining and privacy-preserving utility mining[J]. Perspectives in Science, 2016, 7: 74-80. 10.1016/j.pisc.2015.11.013 |
53 | ZHANG Q, FANG W, SUN J, et al. Improved genetic algorithm for high-utility itemset mining[J]. IEEE Access, 2019, 7: 176799-176813. 10.1109/access.2019.2958150 |
54 | PAZHANIRAJA N, SOUNTHARRAJAN S. High utility itemset mining using dolphin echolocation optimization[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(8): 8413-8426. 10.1007/s12652-020-02571-1 |
55 | KRISHNA G J, RAVI V. Mining top high utility association rules using binary differential evolution[J]. Engineering Applications of Artificial Intelligence, 2020, 96: No.103935. 10.1016/j.engappai.2020.103935 |
56 | KRISHNA G J, RAVI V. High utility itemset mining using binary differential evolution: an application to customer segmentation[J]. Expert Systems with Applications, 2021, 181: No.115122. 10.1016/j.eswa.2021.115122 |
57 | CAI X Y, LI Y X, FAN Z, et al. An external archive guided multi-objective evolutionary algorithm based on decomposition for combinatorial optimization [J]. IEEE Transactions on Evolutionary Computation, 2015, 19(4): 508-523. 10.1109/tevc.2014.2350995 |
58 | ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. 10.1109/tevc.2007.892759 |
59 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
60 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm [R/OL] (2001-05) [2022-03-23].. |
61 | ZHANG L, FU G L, CHENG F, et al. A multi-objective evolutionary approach for mining frequent and high utility itemsets[J]. Applied Soft Computing, 2018, 62: 974-986. 10.1016/j.asoc.2017.09.033 |
62 | AHMED U, LIN J C W, SRIVASTAVA G, et al. An evolutionary model to mine high expected utility patterns from uncertain databases[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(1): 19-28. 10.1109/tetci.2020.3000224 |
63 | CAO H, YANG S S, WANG Q R, et al. A closed itemset property based multi-objective evolutionary approach for mining frequent and high utility itemsets[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 3356-3363. 10.1109/cec.2019.8789985 |
64 | FANG W, ZHANG Q, SUN J, et al. Mining high quality patterns using multi-objective evolutionary algorithm[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3883-3898. 10.1109/tkde.2020.3033519 |
65 | 韩萌,丁剑. 数据流频繁模式挖掘综述[J]. 计算机应用, 2019, 39(3):719-727. 10.11772/j.issn.1001-9081.2018081712 |
HAN M, DING J. Survey of frequent pattern mining over data streams[J]. Journal of Computer Applications, 2019, 39(3): 719-727. 10.11772/j.issn.1001-9081.2018081712 | |
66 | 肖文,胡娟. 基于数据集稀疏度的频繁项集挖掘算法性能分析[J]. 计算机应用, 2018, 38(4):995-1000. |
XIAO W, HU J. Performance analysis of frequent itemset mining algorithms based on sparseness of dataset[J]. Journal of Computer Applications, 2018, 38(4): 995-1000. |
[1] | 高培根, 锁斌. 基于加权犹豫模糊集的实验设计与分阶段PSO-Kriging建模[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2144-2150. |
[2] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
[3] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
[4] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
[5] | 田茂江, 陈鸣科, 堵威, 杜文莉. 面向大规模重叠问题的两阶段差分分组方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1348-1354. |
[6] | 张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363. |
[7] | 赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong. 优化场景视角下的进化多任务优化综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1325-1337. |
[8] | 杜晓昕, 周薇, 王浩, 郝田茹, 王振飞, 金梅, 张剑飞. 智能算法的亚群优化策略综述[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 819-830. |
[9] | 王震, 张珊珊, 邬斌扬, 苏万华. 基于自适应粒子群优化算法的串联复合涡轮储能优化策略[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 611-618. |
[10] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
[11] | 黄杰, 武瑞梓, 李均利. 高效的自适应复杂网络鲁棒性优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3530-3539. |
[12] | 郭茂祖, 张雅喆, 赵玲玲. 基于空间语义和个体活动的电动汽车充电站选址方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2819-2827. |
[13] | 郭新明, 刘蕊, 谢飞, 林德钰. 无线视频传感器网络β-QoM目标栅栏覆盖构建算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2877-2884. |
[14] | 徐赛娟, 裴镇宇, 林佳炜, 刘耿耿. 基于多阶段搜索的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2345-2351. |
[15] | 李二超, 程艳丽. 基于权重向量聚类的动态多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2226-2236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||