《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1009-1017.DOI: 10.11772/j.issn.1001-9081.2023040501
所属专题: 第九届全国智能信息处理学术会议(NCIIP 2023)
• 第九届全国智能信息处理学术会议(NCIIP 2023) • 上一篇 下一篇
收稿日期:
2023-04-05
修回日期:
2023-06-02
接受日期:
2023-06-07
发布日期:
2023-12-04
出版日期:
2024-04-10
通讯作者:
黄华娟
作者简介:
韦修喜(1980—),男(壮族),广西百色人,副教授,博士,主要研究方向:机器学习、计算智能基金资助:
Xiuxi WEI1, Maosong PENG2, Huajuan HUANG1()
Received:
2023-04-05
Revised:
2023-06-02
Accepted:
2023-06-07
Online:
2023-12-04
Published:
2024-04-10
Contact:
Huajuan HUANG
About author:
WEI Xiuxi, born in 1980, Ph. D., associate professor. His research interests include machine learning, computational intelligence.Supported by:
摘要:
针对无线传感网络(WSN)的节点覆盖存在着覆盖率低、节点分布不均匀的问题,提出一种基于多策略改进的蝴蝶优化算法(MIBOA)的节点覆盖优化策略。首先,将基础的蝴蝶优化算法(BOA)与麻雀搜索算法(SSA)结合改进搜索过程;其次,引入自适应权重系数提高寻优精度和收敛速度;最后,对当前最优个体进行柯西变异扰动,提高算法鲁棒性。基准测试函数的寻优实验结果说明,MIBOA基本可在3 s内求解测试函数最优值,且收敛平均值精度较BOA提高了97.96%。将MIBOA应用于WSN节点覆盖优化问题,与BOA和SSA相比,节点覆盖率至少提高了3.63个百分点;与改进灰狼优化算法(IGWO)相比,部署时间缩短了145.82 s;与改进鲸群优化算法(IWOA)相比,节点覆盖率提高了0.20个百分点且时间缩短了1 112.61 s。综上,MIBOA可较好提高节点覆盖率并降低冗余覆盖率,有效延长WSN的生存时间。
中图分类号:
韦修喜, 彭茂松, 黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化[J]. 计算机应用, 2024, 44(4): 1009-1017.
Xiuxi WEI, Maosong PENG, Huajuan HUANG. Node coverage optimization of wireless sensor network based on multi-strategy improved butterfly optimization algorithm[J]. Journal of Computer Applications, 2024, 44(4): 1009-1017.
函数编号 | 函数名 | 函数表达式 | 定义域 | 维度 | 最优值 |
---|---|---|---|---|---|
F1 | Zakharov | [-100,100] | 50 | 0 | |
F2 | Rosenbrock | [-30,30] | 50 | 0 | |
F3 | High Conditioned Elliptic | [-100,100] | 50 | 0 | |
F4 | Ackley | [-32,32] | 50 | 8.88E-16 | |
F5 | Schaffer | [-100,100] | 50 | 0 | |
F6 | Alpine | [-10,10] | 50 | 0 |
表1 测试函数详细信息
Tab. 1 Detail information of test functions
函数编号 | 函数名 | 函数表达式 | 定义域 | 维度 | 最优值 |
---|---|---|---|---|---|
F1 | Zakharov | [-100,100] | 50 | 0 | |
F2 | Rosenbrock | [-30,30] | 50 | 0 | |
F3 | High Conditioned Elliptic | [-100,100] | 50 | 0 | |
F4 | Ackley | [-32,32] | 50 | 8.88E-16 | |
F5 | Schaffer | [-100,100] | 50 | 0 | |
F6 | Alpine | [-10,10] | 50 | 0 |
函数 | 算法 | 最差值 | 最优值 | 平均值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|---|
F1 | BOA | 5.37E+05 | 9.79E-12 | 3.02E+03 | 3.23E+04 | 0.176 22 |
MSBOA | 1.38E+05 | 0.00E+00 | 8.24E+02 | 8.84E+03 | 8.677 50 | |
MIBOA | 1.60E-10 | 0.00E+00 | 3.20E-13 | 7.16E-12 | 0.970 41 | |
PPSO | 1.69E+06 | 4.83E-01 | 4.69E+03 | 7.59E+04 | 0.149 02 | |
GWO | 9.48E+08 | 3.59E+00 | 1.93E+06 | 4.20E+07 | 0.384 43 | |
F2 | BOA | 2.92E+10 | 4.89E+01 | 1.06E+08 | 1.50E+09 | 0.293 91 |
MSBOA | 1.26E+10 | 4.70E+01 | 2.76E+07 | 5.60E+08 | 6.921 90 | |
MIBOA | 4.90E+01 | 6.13E-05 | 2.99E-01 | 3.79E+00 | 1.128 20 | |
PPSO | 1.31E+10 | 4.83E+01 | 4.15E+07 | 6.80E+08 | 0.205 13 | |
GWO | 5.88E+10 | 4.61E+01 | 5.16E+08 | 4.50E+09 | 0.454 99 | |
F3 | BOA | 4.60E+09 | 1.22E-11 | 3.09E+07 | 3.00E+08 | 0.870 86 |
MSBOA | 1.13E+09 | 0.00E+00 | 3.70E+06 | 5.40E+07 | 6.322 40 | |
MIBOA | 4.62E+09 | 0.00E+00 | 9.24E+06 | 2.10E+08 | 1.569 50 | |
PPSO | 1.74E+09 | 7.33E-01 | 7.02E+06 | 9.80E+07 | 0.486 78 | |
GWO | 5.23E+09 | 1.56E-25 | 2.59E+07 | 2.80E+08 | 0.731 09 | |
F4 | BOA | 2.13E+01 | 1.17E-10 | 4.90E+00 | 8.51E+00 | 0.332 36 |
MSBOA | 2.13E+01 | 8.88E-16 | 9.71E+00 | 1.04E+01 | 11.265 90 | |
MIBOA | 2.07E-06 | 8.88E-16 | 4.15E-09 | 9.27E-08 | 1.160 40 | |
PPSO | 2.12E+01 | 2.00E+01 | 2.00E+01 | 5.55E-02 | 0.241 55 | |
GWO | 2.14E+01 | 2.11E+01 | 2.11E+01 | 3.32E-02 | 0.588 92 | |
F5 | BOA | 1.12E+01 | 3.31E-06 | 1.52E+00 | 2.92E+00 | 2.282 00 |
MSBOA | 5.73E+00 | 0.00E+00 | 3.42E-02 | 3.07E-01 | 5.022 80 | |
MIBOA | 4.30E-03 | 0.00E+00 | 2.58E-05 | 3.30E-04 | 2.641 60 | |
PPSO | 9.61E+00 | 7.28E-02 | 2.99E-01 | 7.13E-01 | 1.195 70 | |
GWO | 1.08E+01 | 1.98E-08 | 4.18E-01 | 1.45E+00 | 1.420 40 | |
F6 | BOA | 5.64E+01 | 1.48E-10 | 3.25E+00 | 1.05E+01 | 0.214 65 |
MSBOA | 1.34E-01 | 0.00E+00 | 8.22E-04 | 7.07E-03 | 2.250 20 | |
MIBOA | 3.97E-09 | 0.00E+00 | 7.93E-12 | 1.77E-10 | 0.630 10 | |
PPSO | 5.37E+05 | 9.79E-12 | 3.02E+03 | 3.23E+04 | 0.147 02 | |
GWO | 1.38E+05 | 0.00E+00 | 8.24E+02 | 8.84E+03 | 0.260 20 |
表2 不同算法的寻优结果
Tab. 2 Optimization results of different algorithms
函数 | 算法 | 最差值 | 最优值 | 平均值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|---|
F1 | BOA | 5.37E+05 | 9.79E-12 | 3.02E+03 | 3.23E+04 | 0.176 22 |
MSBOA | 1.38E+05 | 0.00E+00 | 8.24E+02 | 8.84E+03 | 8.677 50 | |
MIBOA | 1.60E-10 | 0.00E+00 | 3.20E-13 | 7.16E-12 | 0.970 41 | |
PPSO | 1.69E+06 | 4.83E-01 | 4.69E+03 | 7.59E+04 | 0.149 02 | |
GWO | 9.48E+08 | 3.59E+00 | 1.93E+06 | 4.20E+07 | 0.384 43 | |
F2 | BOA | 2.92E+10 | 4.89E+01 | 1.06E+08 | 1.50E+09 | 0.293 91 |
MSBOA | 1.26E+10 | 4.70E+01 | 2.76E+07 | 5.60E+08 | 6.921 90 | |
MIBOA | 4.90E+01 | 6.13E-05 | 2.99E-01 | 3.79E+00 | 1.128 20 | |
PPSO | 1.31E+10 | 4.83E+01 | 4.15E+07 | 6.80E+08 | 0.205 13 | |
GWO | 5.88E+10 | 4.61E+01 | 5.16E+08 | 4.50E+09 | 0.454 99 | |
F3 | BOA | 4.60E+09 | 1.22E-11 | 3.09E+07 | 3.00E+08 | 0.870 86 |
MSBOA | 1.13E+09 | 0.00E+00 | 3.70E+06 | 5.40E+07 | 6.322 40 | |
MIBOA | 4.62E+09 | 0.00E+00 | 9.24E+06 | 2.10E+08 | 1.569 50 | |
PPSO | 1.74E+09 | 7.33E-01 | 7.02E+06 | 9.80E+07 | 0.486 78 | |
GWO | 5.23E+09 | 1.56E-25 | 2.59E+07 | 2.80E+08 | 0.731 09 | |
F4 | BOA | 2.13E+01 | 1.17E-10 | 4.90E+00 | 8.51E+00 | 0.332 36 |
MSBOA | 2.13E+01 | 8.88E-16 | 9.71E+00 | 1.04E+01 | 11.265 90 | |
MIBOA | 2.07E-06 | 8.88E-16 | 4.15E-09 | 9.27E-08 | 1.160 40 | |
PPSO | 2.12E+01 | 2.00E+01 | 2.00E+01 | 5.55E-02 | 0.241 55 | |
GWO | 2.14E+01 | 2.11E+01 | 2.11E+01 | 3.32E-02 | 0.588 92 | |
F5 | BOA | 1.12E+01 | 3.31E-06 | 1.52E+00 | 2.92E+00 | 2.282 00 |
MSBOA | 5.73E+00 | 0.00E+00 | 3.42E-02 | 3.07E-01 | 5.022 80 | |
MIBOA | 4.30E-03 | 0.00E+00 | 2.58E-05 | 3.30E-04 | 2.641 60 | |
PPSO | 9.61E+00 | 7.28E-02 | 2.99E-01 | 7.13E-01 | 1.195 70 | |
GWO | 1.08E+01 | 1.98E-08 | 4.18E-01 | 1.45E+00 | 1.420 40 | |
F6 | BOA | 5.64E+01 | 1.48E-10 | 3.25E+00 | 1.05E+01 | 0.214 65 |
MSBOA | 1.34E-01 | 0.00E+00 | 8.22E-04 | 7.07E-03 | 2.250 20 | |
MIBOA | 3.97E-09 | 0.00E+00 | 7.93E-12 | 1.77E-10 | 0.630 10 | |
PPSO | 5.37E+05 | 9.79E-12 | 3.02E+03 | 3.23E+04 | 0.147 02 | |
GWO | 1.38E+05 | 0.00E+00 | 8.24E+02 | 8.84E+03 | 0.260 20 |
节点数 | 覆盖率/% | ||
---|---|---|---|
BOA | SSA | MIBOA | |
45 | 83.04 | 91.17 | 96.08 |
50 | 86.64 | 91.85 | 96.61 |
55 | 88.55 | 92.93 | 99.41 |
表3 不同节点数下不同算法优化后的覆盖率对比
Tab. 3 Comparison of coverage rates optimized by different algorithms under different node numbers
节点数 | 覆盖率/% | ||
---|---|---|---|
BOA | SSA | MIBOA | |
45 | 83.04 | 91.17 | 96.08 |
50 | 86.64 | 91.85 | 96.61 |
55 | 88.55 | 92.93 | 99.41 |
部署策略 | 覆盖率/% | 时间/s |
---|---|---|
随机初始化 | 75.47 | — |
BOA | 80.78 | 10.46 |
SSA | 89.41 | 6.28 |
GWO | 91.16 | 147.70 |
IGWO | 94.28 | 158.60 |
MIBOA | 93.04 | 12.78 |
表4 IGWO与其他优化部署策略结果对比
Tab. 4 Result comparison of IGWO and other optimized deployment strategies
部署策略 | 覆盖率/% | 时间/s |
---|---|---|
随机初始化 | 75.47 | — |
BOA | 80.78 | 10.46 |
SSA | 89.41 | 6.28 |
GWO | 91.16 | 147.70 |
IGWO | 94.28 | 158.60 |
MIBOA | 93.04 | 12.78 |
部署策略 | 覆盖率/% | 时间/s |
---|---|---|
随机初始化 | 81.72 | — |
BOA | 88.55 | 539.96 |
SSA | 92.93 | 268.55 |
WOA | 92.72 | 784.21 |
IWOA | 99.21 | 1 566.97 |
MIBOA | 99.41 | 454.36 |
表5 IWOA与其他优化部署策略结果对比
Tab. 5 Result comparison of IWOA and other optimized deployment strategies
部署策略 | 覆盖率/% | 时间/s |
---|---|---|
随机初始化 | 81.72 | — |
BOA | 88.55 | 539.96 |
SSA | 92.93 | 268.55 |
WOA | 92.72 | 784.21 |
IWOA | 99.21 | 1 566.97 |
MIBOA | 99.41 | 454.36 |
1 | JAWAD H M, NORDIN R, GHARGHAN S K, et al. Energy-efficient wireless sensor networks for precision agriculture: a review[J]. Sensors, 2017, 17(8): 1781. 10.3390/s17081781 |
2 | MOHD AMAN A H, YADEGARIDEHKORDI E, ATTARBASHI Z S, et al. A survey on trend and classification of internet of things reviews[J]. IEEE Access, 2020, 8: 111763-111782. 10.1109/access.2020.3002932 |
3 | DING G, WU Q, ZHANG L, et al. An amateur drone surveillance system based on the cognitive internet of things[J]. IEEE Communications Magazine, 2018, 56(1): 29-35. 10.1109/mcom.2017.1700452 |
4 | GHARGHAN S K, NORDIN R, ISMAIL M. A wireless sensor network with soft computing localization techniques for track cycling applications[J]. Sensors, 2016, 16(8): 1043. 10.3390/s16081043 |
5 | SISINNI E, SAIFULLAH A, HAN S, et al. Industrial internet of things: challenges, opportunities, and directions[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4724-4734. 10.1109/tii.2018.2852491 |
6 | MA D X, MA J, XU P M, et al. The application research progress of wireless sensor networks[J]. Applied Mechanics and Materials, 2013, 475/476: 520-523. 10.4028/www.scientific.net/amm.475-476.520 |
7 | 苗春雨, 陈丽娜, 吴建军, 等. 无线传感器网络节点位置验证框架[J]. 计算机研究与发展, 2019, 56(6): 1231-1243. |
MIAO C Y, CHEN L N, WU J J, et al. Node location verification framework for WSN[J]. Journal of Computer Research and Development, 2019, 56(6): 1231-1243. | |
8 | 胡小平, 曹敬.改进灰狼优化算法在WSN节点部署中的应用[J].传感技术学报,2018,31(5):753-758. 10.3969/j.issn.1004-1699.2018.05.017 |
HU X P, CAO J. Improved grey wolf optimization algorithm for WSN node deployment[J]. Chinese Journal of Sensors and Actuators, 2018,31(5):753-758. 10.3969/j.issn.1004-1699.2018.05.017 | |
9 | 石拓, 李建中.无线传感器网络中覆盖算法研究综述[J].智能计算机与应用,2021,11(8):193-196. 10.3969/j.issn.2095-2163.2021.08.043 |
SHI T, LI J Z. A review of the coverage problems in WSNs[J]. Intelligent Computer and Applications, 2021,11(8):193-196. 10.3969/j.issn.2095-2163.2021.08.043 | |
10 | 李凌云. 结构优化的群体智能优化算法研究[D]. 成都:电子科技大学, 2022:1. |
LI L Y. Research on swarm intelligence optimization algorithm for structure optimization[D]. Chengdu: University of Electronic Science and Technology of China, 2022:1. | |
11 | 李二超, 张生辉.基于新评价指标自适应预测的动态多目标优化算法[J].计算机应用, 2023, 43(10): 3178-3187. 10.11772/j.issn.1001-9081.2022091453 |
LI E C, ZHANG S H. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index[J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. 10.11772/j.issn.1001-9081.2022091453 | |
12 | 苏李君, 张亚玲, 徐小平,等.基于灰狼优化算法的微分方程数值解法[J].计算机应用,2022,42(S2):140-147. |
SU L J, ZHANG Y L, XU X P, et al. Numerical solution of differential equation based on grey wolf optimization algorithm[J]. Journal of Computer Applications, 2022, 42(S2): 140-147. | |
13 | 马学森, 许雪梅, 蒋功辉, 等.混合自适应粒子群工作流调度优化算法[J].计算机应用,2023,43(2):474-483. |
MA X S, XU X M, JIANG G H, et al. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling[J]. Journal of Computer Applications, 2023, 43(2): 474-483. | |
14 | ZHONG L L, ZHOU Y Q, LUO Q F, et al. Wind driven dragonfly algorithm for global optimization[J]. Concurrency and Computation: Practice and Experience, 2020, 33(6): e6054. 10.1002/cpe.6054 |
15 | 李庚松, 刘艺, 郑奇斌, 等.基于多目标混合蚁狮优化的算法选择方法[J].计算机研究与发展, 2023, 60(7): 1533-1550. 10.7544/issn1000-1239.202220769 |
LI G S, LIU Y, ZHENG Q B, et al. Algorithm selection method based on multi-objective hybrid ant lion optimizer[J]. Journal of Computer Research and Development, 2023, 60(7): 1533-1550. 10.7544/issn1000-1239.202220769 | |
16 | 龚瑞昆, 邓朋浩.基于改进PSO-BFO算法的WSN节点覆盖优化[J].华北理工大学学报(自然科学版),2021,43(4):52-59. |
GONG R K, DENG P H. WSN node coverage optimization based in improved PSO-BFO algorithm[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2021,43(4):52-59. | |
17 | 宋婷婷, 张达敏, 王依柔, 等. 基于改进鲸鱼优化算法的WSN覆盖优化[J].传感技术学报,2020,33(3):415-422. 10.3969/j.issn.1004-1699.2020.03.016 |
SONG T T, ZHANG D M, WANG Y R, et al. WSN coverage optimization based on improved whale optimization algorithm[J]. Chinese Journal of Sensors and Actuators, 2020,33(3):415-422. 10.3969/j.issn.1004-1699.2020.03.016 | |
18 | ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23: 715-734. 10.1007/s00500-018-3102-4 |
19 | ARORA S, SINGH S. Node localization in wireless sensor networks using butterfly optimization algorithm[J]. Arabian Journal for Science & Engineering, 2017, 42: 3325-3335. 10.1007/s13369-017-2471-9 |
20 | DUBEY A K. Optimized hybrid learning for multi disease prediction enabled by lion with butterfly optimization algorithm[J]. Sādhanā, 2021, 46: No. 63. 10.1007/s12046-021-01574-8 |
21 | TUBISHAT M, ALSWAITTI M, MIRJALILI S, et al. Dynamic butterfly optimization algorithm for feature selection[J]. IEEE Access, 2020, 8: 194303-194314. 10.1109/access.2020.3033757 |
22 | ARORA S, SINGH S. An improved butterfly optimization algorithm with chaos[J]. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2017, 32(1): 1079-1088. 10.3233/jifs-16798 |
23 | ARORA S, ANAND P. Learning automata-based butterfly optimization algorithm for engineering design problems[J]. International Journal of Computational Materials Science and Engineering, 2018, 7(4): 1850021. |
24 | 宁杰琼, 何庆.混合策略改进的蝴蝶优化算法[J].计算机应用研究,2021,38(6):1718-1723,1738. 10.19734/j.issn.1001-3695.2020.06.0171 |
NING J Q, HE Q. Mixed strategy to improve butterfly optimization algorithm[J]. Application Research of Computers, 2021, 38(6): 1718-1723,1738. 10.19734/j.issn.1001-3695.2020.06.0171 | |
25 | XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. 10.1080/21642583.2019.1708830 |
26 | 薛建凯. 一种新型的群智能优化技术的研究与应用:麻雀搜索算法[D].上海:东华大学, 2020: 17-19. 10.1080/21642583.2019.1708830 |
XUE J K. Research and application of a new swarm intelligent optimization technique: sparrow search algorithm[D]. Shanghai: Donghua University, 2020: 17-19. 10.1080/21642583.2019.1708830 | |
27 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. 10.1109/4235.585893 |
28 | 肖爽, 张京敏. 基于Lévy飞行和自适应权重的混合WOAMFO算法[J].数学的实践与认识,2021,51(10):133-143. |
XIAO S, ZHANG J M. Hybrid algorithm WOAMFO based on Lévy flight and adaptive weight[J]. Mathematics in Practice and Theory, 2021, 51(10): 133-143. | |
29 | 王依柔, 张达敏, 徐航, 等.基于自适应扰动的疯狂蝴蝶算法[J].计算机应用研究,2020,37(11):3276-3280. |
WANG Y R, ZHANG D M, XU H, et al. Crazy butterfly algorithm based on adaptive perturbation[J]. Application Research of Computers, 2020,37(11): 3276-3280. | |
30 | 苏福清, 匡洪海, 钟浩, 等.基于柯西变异改进粒子群算法的无功优化[J].电气工程学报,2021,16(1):55-61. |
SU F Q, KUANG H H, ZHONG H, et al. Reactive power optimization based on Cauchy mutation and improved adaptive particle swarm optimization[J]. Journal of Electrical Engineering, 2021, 16(1):55-61. | |
31 | GHASEMI M, AKBARI E, RAHIMNEJAD A, et al. Phasor particle swarm optimization: a simple and efficient variant of PSO[J]. Soft Computing, 2019, 23: 9701-9718. 10.1007/s00500-018-3536-8 |
32 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
33 | LIANG J J, QU B Y, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[R/OL]. [2023-04-01]. . |
[1] | 李牧, 骆宇, 柯熙政. 基于调频连续波雷达的人体生命体征检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1978-1986. |
[2] | 李大海, 詹美欣, 王振东. 基于多个改进策略的增强麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2845-2854. |
[3] | 张玉杰, 王帆. 基于改进麻雀搜索算法的照明控制优化[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 835-841. |
[4] | 向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 820-826. |
[5] | 王哲, 王启名, 李陶深, 葛丽娜. 基于深度强化学习的SWIPT边缘网络联合优化方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3540-3550. |
[6] | 高兵, 郑雅, 秦静, 邹启杰, 汪祖民. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1201-1206. |
[7] | 段玉先, 刘昌云. 基于Sobol序列和纵横交叉策略的麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 36-43. |
[8] | 陈俊, 何庆. 基于余弦相似度的改进蝴蝶优化算法[J]. 计算机应用, 2021, 41(9): 2668-2677. |
[9] | 汤安迪, 韩统, 徐登武, 谢磊. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136. |
[10] | 张争万, 张春炯, 李洪兵, 谢涛. 基于免疫连通模型的多路径传输选择算法[J]. 计算机应用, 2020, 40(12): 3571-3577. |
[11] | 韩司, 郑宝昆, 曹奇敏. 基于逻辑密钥树的无线传感网络密钥管理方案[J]. 计算机应用, 2019, 39(5): 1378-1384. |
[12] | 谢小军, 于浩, 陶磊, 张信明. 可充电无线传感网络能量均衡路由算法[J]. 计算机应用, 2017, 37(6): 1545-1549. |
[13] | 徐同伟, 何庆, 吴意乐, 顾海霞. 基于改进离散果蝇优化算法的WSN广播路由算法[J]. 计算机应用, 2017, 37(4): 965-969. |
[14] | 甘峰浩, 牛玉刚, 贾廷纲. 基于模糊压缩感知的无线传感网络拥塞控制算法[J]. 计算机应用, 2015, 35(9): 2430-2435. |
[15] | 刘明珠 许士涛 陈光. 基于自适应更新的无线传感网络MAC协议[J]. 计算机应用, 2012, 32(12): 3508-3511. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||