1 |
POUYANFAR S, SADIQ S, YAN Y, et al. A survey on deep learning: algorithms, techniques, and applications[J]. ACM Computing Surveys, 2018, 51(5): No.92.
|
2 |
McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282.
|
3 |
ZHU L, LIU Z, HAN S. Deep leakage from gradients[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 14774-14784.
|
4 |
SONG C, RISTENPART T, SHMATIKOV V. Machine learning models that remember too much[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 587-601.
|
5 |
DWORK C, McSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]// Proceedings of the 2006 Theory of Cryptography Conference, LNCS 3876. Berlin: Springer, 2006: 265-284.
|
6 |
RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[M]// DeMILLO R A, DOBKIN D P, JONES A K, et al. Foundations of secure computation. Cambridge: Academia Press, 1978: 169-179.
|
7 |
LI Y, ZHOU Y, JOLFAEI A, et al. Privacy-preserving federated learning framework based on chained secure multiparty computing[J]. IEEE Internet of Things Journal, 2021, 8(8): 6178-6186.
|
8 |
AHMAD A, LUO W, ROBLES-KELLY A. Robust federated learning under statistical heterogeneity via Hessian spectral decomposition[J]. Pattern Recognition, 2023, 141: No.109635.
|
9 |
WANG Z, HU Q, ZOU X. Can we trust the similarity measurement in federated learning?[EB/OL]. [2023-12-23]..
|
10 |
ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318.
|
11 |
GEYER R C, KLEIN T, NABI M. Differentially private federated learning: a client level perspective[EB/OL]. [2023-11-16]..
|
12 |
ZHENG Q, CHEN S, LONG Q, et al. Federated f-differential privacy[C]// Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2021: 2251-2259.
|
13 |
SINGH I, ZHOU H, YANG K, et al. Differentially-private federated neural architecture search[EB/OL]. [2023-10-18]..
|
14 |
TRUEX S, LIU L, CHOW K H, et al. LDP-Fed: federated learning with local differential privacy[C]// Proceedings of the 3rd ACM International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2020: 61-66.
|
15 |
WEI K, LI J, DING M, et al. User-level privacy-preserving federated learning: analysis and performance optimization[J]. IEEE Transactions on Mobile Computing, 2022, 21(9): 3388-3401.
|
16 |
康海燕,冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105.
|
|
KANG H Y, JI Y R. Research on federated learning approach based on local differential privacy[J]. Journal on Communications, 2022, 43(10): 94-105.
|
17 |
VAN DER VEEN K L, SEGGERS R, BLOEM P, et al. Three tools for practical differential privacy[EB/OL]. [2023-10-09]..
|
18 |
FU J, CHEN Z, HAN X. Adapt DP-FL: differentially private federated learning with adaptive noise[C]// Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2022: 656-663.
|
19 |
XU Z, SHI S, LIU A X, et al. An adaptive and fast convergent approach to differentially private deep learning[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 1867-1876.
|
20 |
YU L, LIU L, PU C, et al. Differentially private model publishing for deep learning[C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 332-349.
|
21 |
张少波,张激勇,朱更明,等. 基于Bregman散度和差分隐私的个性化联邦学习方法[J]. 软件学报, 2024, 35(11): 5249-5262.
|
|
ZHANG S B, ZHANG J Y, ZHU G M, et al. Personalized federated learning method based on Bregman divergence and differential privacy[J]. Journal of Software, 2024, 35(11): 5249-5262.
|
22 |
尹春勇,屈锐. 基于个性化差分隐私的联邦学习算法[J]. 计算机应用, 2023, 43(4):1160-1168.
|
|
YIN C Y, QU R. Federated learning algorithm based on personalized differential privacy[J]. Journal of Computer Applications, 2023, 43(4):1160-1168.
|
23 |
GOETZ J, MALIK K, BUI D, et al. Active federated learning[EB/OL]. [2023-11-01]..
|
24 |
XIE Y, ZHANG L. Federated learning with personalized differential privacy combining client selection[C]// Proceedings of the 8th International Conference on Big Data Computing and Communications. Piscataway: IEEE, 2022: 79-87.
|
25 |
LI T, SANJABI M, BEIRAMI A, et al. Fair resource allocation in federated learning[EB/OL]. [2024-01-01]..
|
26 |
YANG C, ZHAO X. Study on the selection method of federated learning clients for smart manufacturing[J]. Electronics, 2023, 12(11): No.2532.
|
27 |
YANG Q, LIU Y, CHENG Y, et al. Federated learning, SLAIML[M]. Cham: Springer, 2020: 1-189.
|
28 |
DWORK C. Differential privacy: a survey of results[C]// Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation, LNCS 4978. Berlin: Springer, 2008: 1-19.
|
29 |
DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends® in Theoretical Computer Science, 2014, 9(3/4): 211-407.
|