《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (6): 1724-1731.DOI: 10.11772/j.issn.1001-9081.2024060903
• 第十二届CCF大数据学术会议 • 上一篇
李自亮1,2, 朱广丽1,2(), 张玉雷1,2, 刘佳佳1,2, 焦熠璇1,2, 张顺香1,2
收稿日期:
2024-07-01
修回日期:
2024-07-28
接受日期:
2024-08-01
发布日期:
2024-08-22
出版日期:
2025-06-10
通讯作者:
朱广丽
作者简介:
李自亮(1999—),男,安徽六安人,硕士研究生,CCF会员,主要研究方向:方面级情感分析、关系抽取基金资助:
Ziliang LI1,2, Guangli ZHU1,2(), Yulei ZHANG1,2, Jiajia LIU1,2, Yixuan JIAO1,2, Shunxiang ZHANG1,2
Received:
2024-07-01
Revised:
2024-07-28
Accepted:
2024-08-01
Online:
2024-08-22
Published:
2025-06-10
Contact:
Guangli ZHU
About author:
LI Ziliang, born in 1999, M. S. candidate. His research interests include aspect-based sentiment analysis, relation extraction.Supported by:
摘要:
方面级情感分析(ABSA)是一项细粒度的情感分析任务,旨在分析给定文本中特定方面词的情感极性。现有的ABSA方法采用图卷积网络(GCN)处理句法和语义信息,然而这些方法将方面词的所有句法依赖等同看待,忽略了远距离不相关词对目标方面词的影响,造成目标方面词和观点词权重分配的不适宜,且对语义信息提取不充分。针对这些问题,提出一种集成句法与情感知识的ABSA模型。首先,根据句法信息构建可达矩阵,以此为基础,利用方面词进行中心位置赋权构建句法增强图;其次,通过外部情感知识和方面增强构建语义增强图,利用图卷积分别对句法增强图和语义增强图进行充分建模形成不同的特征通道;再次,通过双仿射注意力更有效地交互融合句法信息和语义信息;最后,运用平均池化和拼接操作获取方面词对应的最终特征向量。实验结果表明,相较于深度依赖感知图卷积网络模型DA-GCN-BERT (deep Dependency Aware GCN+BERT(Bidirectional Encoder Representations from Transformers)),所提模型在5个公开数据集上的准确率分别提高了1.71、1.41、1.27、0.17和0.43个百分点。可见,所提模型在ABSA领域具有很强的适用性。
中图分类号:
李自亮, 朱广丽, 张玉雷, 刘佳佳, 焦熠璇, 张顺香. 集成句法与情感知识的方面级情感分析模型[J]. 计算机应用, 2025, 45(6): 1724-1731.
Ziliang LI, Guangli ZHU, Yulei ZHANG, Jiajia LIU, Yixuan JIAO, Shunxiang ZHANG. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge[J]. Journal of Computer Applications, 2025, 45(6): 1724-1731.
情感词 | 情感分数 | 情感词 | 情感分数 |
---|---|---|---|
love | 0.830 | bad | -0.800 |
easily | 0.943 | hard | -0.059 |
表1 情感分数示例
Tab.1 Examples of sentiment score
情感词 | 情感分数 | 情感词 | 情感分数 |
---|---|---|---|
love | 0.830 | bad | -0.800 |
easily | 0.943 | hard | -0.059 |
数据集 | 积极 | 中性 | 消极 | |||
---|---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
1 561 | 173 | 3 127 | 346 | 1 560 | 173 | |
Lap14 | 994 | 341 | 464 | 169 | 870 | 128 |
Rest14 | 2 164 | 728 | 637 | 196 | 807 | 196 |
Rest15 | 1 178 | 439 | 50 | 35 | 382 | 328 |
Rest16 | 1 620 | 597 | 88 | 38 | 709 | 190 |
表2 数据集信息
Tab.2 Dataset information
数据集 | 积极 | 中性 | 消极 | |||
---|---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
1 561 | 173 | 3 127 | 346 | 1 560 | 173 | |
Lap14 | 994 | 341 | 464 | 169 | 870 | 128 |
Rest14 | 2 164 | 728 | 637 | 196 | 807 | 196 |
Rest15 | 1 178 | 439 | 50 | 35 | 382 | 328 |
Rest16 | 1 620 | 597 | 88 | 38 | 709 | 190 |
超参数 | 值 | 超参数 | 值 |
---|---|---|---|
Optimizer | Adamax | Embedding | 768 |
Learning rate | 0.000 1 | Batch size | 32 |
Regularization coefficient | 0.000 01 | Dropout | 0.5 |
表3 模型超参数
Tab.3 Model hyperparameters
超参数 | 值 | 超参数 | 值 |
---|---|---|---|
Optimizer | Adamax | Embedding | 768 |
Learning rate | 0.000 1 | Batch size | 32 |
Regularization coefficient | 0.000 01 | Dropout | 0.5 |
实验环境 | 具体配置 | 实验环境 | 具体配置 |
---|---|---|---|
操作系统 | Windows 10 | 显存 | 16 GB |
处理器 | Intel i7-8700k | 开发语言 | Python 3.9 |
内存 | 32 GB | 深度学习框架 | PyTorch 2.0 |
显卡 | GTX 3070 |
表4 实验环境
Tab.4 Experimental environment
实验环境 | 具体配置 | 实验环境 | 具体配置 |
---|---|---|---|
操作系统 | Windows 10 | 显存 | 16 GB |
处理器 | Intel i7-8700k | 开发语言 | Python 3.9 |
内存 | 32 GB | 深度学习框架 | PyTorch 2.0 |
显卡 | GTX 3070 |
类别 | 模型 | Lap14 | Rest14 | Rest15 | Rest16 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | ||
LSTM模型 | LSTM | 69.56 | 67.70 | 69.28 | 63.09 | 78.13 | 67.47 | 77.37 | 55.17 | 86.80 | 63.88 |
RAM | 69.36 | 67.30 | 74.49 | 71.35 | 80.23 | 70.80 | 79.30 | 60.49 | 85.58 | 65.76 | |
ATAE-LSTM | 69.65 | 67.40 | 69.14 | 63.18 | 77.32 | 66.57 | 75.43 | 56.34 | 82.25 | 63.85 | |
注意力模型 | IAN | 72.50 | 70.81 | 72.05 | 67.38 | 79.26 | 70.09 | 78.54 | 52.65 | 84.74 | 55.21 |
AOA | 72.30 | 70.20 | 72.65 | 67.52 | 79.97 | 70.42 | — | — | — | — | |
MGAN | 72.54 | 70.81 | 75.39 | 72.47 | 81.25 | 71.94 | — | — | — | — | |
GCN模型 | ASGCN | 72.15 | 70.40 | 75.55 | 71.05 | 80.77 | 72.02 | 79.89 | 61.89 | 88.99 | 67.68 |
AA-GCN | 74.13 | 72.44 | 76.09 | 71.43 | 82.35 | 74.36 | 79.77 | 63.46 | 89.32 | 70.90 | |
SK-GCN-BERT | 75.00 | 73.01 | 79.00 | 75.57 | 83.48 | 75.19 | 83.20 | 66.78 | 87.19 | 72.02 | |
DA-GCN-BERT | 75.43 | 73.67 | 78.82 | 75.28 | 83.43 | 74.35 | 82.97 | 64.56 | 89.69 | 71.86 | |
本文模型 | 77.14 | 74.96 | 80.23 | 75.49 | 84.70 | 75.30 | 83.14 | 67.08 | 90.12 | 73.24 |
表5 不同模型结果的对比 (%)
Tab.5 Comparison of results of different models
类别 | 模型 | Lap14 | Rest14 | Rest15 | Rest16 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | ||
LSTM模型 | LSTM | 69.56 | 67.70 | 69.28 | 63.09 | 78.13 | 67.47 | 77.37 | 55.17 | 86.80 | 63.88 |
RAM | 69.36 | 67.30 | 74.49 | 71.35 | 80.23 | 70.80 | 79.30 | 60.49 | 85.58 | 65.76 | |
ATAE-LSTM | 69.65 | 67.40 | 69.14 | 63.18 | 77.32 | 66.57 | 75.43 | 56.34 | 82.25 | 63.85 | |
注意力模型 | IAN | 72.50 | 70.81 | 72.05 | 67.38 | 79.26 | 70.09 | 78.54 | 52.65 | 84.74 | 55.21 |
AOA | 72.30 | 70.20 | 72.65 | 67.52 | 79.97 | 70.42 | — | — | — | — | |
MGAN | 72.54 | 70.81 | 75.39 | 72.47 | 81.25 | 71.94 | — | — | — | — | |
GCN模型 | ASGCN | 72.15 | 70.40 | 75.55 | 71.05 | 80.77 | 72.02 | 79.89 | 61.89 | 88.99 | 67.68 |
AA-GCN | 74.13 | 72.44 | 76.09 | 71.43 | 82.35 | 74.36 | 79.77 | 63.46 | 89.32 | 70.90 | |
SK-GCN-BERT | 75.00 | 73.01 | 79.00 | 75.57 | 83.48 | 75.19 | 83.20 | 66.78 | 87.19 | 72.02 | |
DA-GCN-BERT | 75.43 | 73.67 | 78.82 | 75.28 | 83.43 | 74.35 | 82.97 | 64.56 | 89.69 | 71.86 | |
本文模型 | 77.14 | 74.96 | 80.23 | 75.49 | 84.70 | 75.30 | 83.14 | 67.08 | 90.12 | 73.24 |
模型 | Lap 14 | Rest14 | Rest15 | Rest16 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | |
w/o P | 75.63 | 73.54 | 79.45 | 74.96 | 84.05 | 74.39 | 82.04 | 66.65 | 89.62 | 72.58 |
w/o R | 76.12 | 74.25 | 78.91 | 74.75 | 84.14 | 74.28 | 81.52 | 66.37 | 87.41 | 71.57 |
w/o S | 76.47 | 74.39 | 78.15 | 73.83 | 83.07 | 73.56 | 81.44 | 65.81 | 88.49 | 71.62 |
w/o A | 76.33 | 74.52 | 78.29 | 74.27 | 83.38 | 73.54 | 82.36 | 65.98 | 87.81 | 71.35 |
w/o D | 75.73 | 73.15 | 78.44 | 74.17 | 83.15 | 74.28 | 81.21 | 65.36 | 87.82 | 72.50 |
本文模型 | 77.14 | 74.96 | 80.23 | 75.49 | 84.70 | 75.30 | 83.14 | 67.08 | 90.12 | 73.24 |
表6 消融实验结果 (%)
Tab.6 Ablation experimental results
模型 | Lap 14 | Rest14 | Rest15 | Rest16 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | Acc | MF1 | |
w/o P | 75.63 | 73.54 | 79.45 | 74.96 | 84.05 | 74.39 | 82.04 | 66.65 | 89.62 | 72.58 |
w/o R | 76.12 | 74.25 | 78.91 | 74.75 | 84.14 | 74.28 | 81.52 | 66.37 | 87.41 | 71.57 |
w/o S | 76.47 | 74.39 | 78.15 | 73.83 | 83.07 | 73.56 | 81.44 | 65.81 | 88.49 | 71.62 |
w/o A | 76.33 | 74.52 | 78.29 | 74.27 | 83.38 | 73.54 | 82.36 | 65.98 | 87.81 | 71.35 |
w/o D | 75.73 | 73.15 | 78.44 | 74.17 | 83.15 | 74.28 | 81.21 | 65.36 | 87.82 | 72.50 |
本文模型 | 77.14 | 74.96 | 80.23 | 75.49 | 84.70 | 75.30 | 83.14 | 67.08 | 90.12 | 73.24 |
1 | BRAUWERS G, FRASINCAR F. A survey on aspect-based sentiment classification[J]. ACM Computing Surveys, 2023, 55(4): No.65. |
2 | 李阳,王石,朱俊武,等. 方面级情感分析综述[J]. 计算机科学, 2023, 50(6A): No.220400077. |
LI Y, WANG S, ZHU J W, et al. Summarization of aspect-level sentiment analysis[J]. Computer Science, 2023, 50(6A): No.220400077. | |
3 | 曲延非. 基于深度学习的细粒度情感分析研究[D]. 长春:吉林大学, 2022:5-58. |
QU Y F. Research on fine-grained sentiment analysis based on deep learning [D]. Changchun: Jilin University, 2022: 5-58. | |
4 | HU M, LIU B. Mining and summarizing customer reviews[C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004: 168-177. |
5 | TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: COLING 2016 Organizing Committee, 2015: 3298-3307. |
6 | MENG W, WEI Y, LIU P, et al. Aspect-based sentiment analysis with feature enhanced attention CNN-BiLSTM [J]. IEEE Access, 2019, 7: 167240-167249. |
7 | PHAN H T, NGUYEN N T, HWANG D. Aspect-level sentiment analysis: a survey of graph convolutional network methods[J]. Information Fusion, 2023, 91: 149-172. |
8 | ZHANG W, LI X, DENG Y, et al. A survey on aspect-based sentiment analysis: tasks, methods, and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11019-11038. |
9 | LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 6319-6329. |
10 | 韩虎,郝俊,张千锟,等. 多源知识融合的方面级情感分析模型[J]. 北京航空航天大学学报, 2024, 50(9): 2688-2695. |
HAN H, HAO J, ZHANG Q K, et al. Multi-source knowledge fusion model for aspect-based sentiment analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2688-2695. | |
11 | GU T, ZHAO H, HE Z, et al. Integrating external knowledge into aspect-based sentiment analysis using graph neural network[J]. Knowledge-Based Systems, 2023, 259: No.110025. |
12 | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. |
13 | JELODAR H, WANG Y, ORJI R, et al. Deep sentiment classification and topic discovery on novel coronavirus or COVID-19 online discussions: NLP using LSTM recurrent neural network approach [J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(10): 2733-2742. |
14 | LIAO W, ZENG B, YIN X, et al. An improved aspect-category sentiment analysis model for text sentiment analysis based on RoBERTa [J]. Applied Intelligence, 2021, 51(6): 3522-3533. |
15 | WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615. |
16 | MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 4068-4074. |
17 | WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238. |
18 | ZHANG M, QIAN T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 3540-3549. |
19 | 柯添赐,刘建华,孙水华,等. 融合强关联依赖和简洁语法的方面级情感分析模型[J]. 计算机应用, 2024, 44(6):1786-1795. |
KE T C, LIU J H, SUN S H, et al. Aspect-level sentiment analysis model combining strong association dependency and concise syntax[J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. | |
20 | ZHAO P, HOU L, WU O. Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 193: No.105443. |
21 | 徐学锋,韩虎. 面向方面级情感分析的多视图表示模型[J]. 计算机工程与应用, 2024, 60(5):112-121. |
XU X F, HAN H. Multi-view representation model for aspect level sentiment analysis[J]. Computer Engineering and Applications, 2024, 60(5): 112-121. | |
22 | BALAHUR A, HERMIDA J M, MONTOYO A. Detecting implicit expressions of emotion in text: a comparative analysis[J]. Decision Support Systems, 2012, 53(4): 742-753. |
23 | CAMBRIA E, SPEER R, HAVASI C, et al. SenticNet: a publicly available semantic resource for opinion mining[C]// Proceedings of the 2010 AAAI Fall Symposium, Palo Alto: AAAI Press, 2010: 14-18. |
24 | CAMBRIA E, PORIA S, HAZARIKA D, et al. SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1795-1802. |
25 | SHI X, HU M, REN F, et al. Prompted representation joint contrastive learning for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2024, 285: No.111345. |
26 | LIU H, LI X, LU W, et al. Graph augmentation networks based on dynamic sentiment knowledge and static external knowledge graphs for aspect-based sentiment analysis[J]. Expert Systems with Applications, 2024, 251: No.123981. |
27 | ZHOU J, HUANG J X, HU Q V, et al. SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205: No.106292. |
28 | LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: No.107643. |
29 | 张玉莹,朱广丽,谈光璞. 基于情感增强和语义依存的金融隐式情感分析模型[J]. 计算机工程与科学, 2024, 46(6):1112-1120. |
ZHANG Y Y, ZHU G L, TAN G P. A financial implicit sentiment analysis model based on sentiment enhancement and semantic dependency[J]. Computer Engineering and Science, 2024, 46(6): 1112-1120. | |
30 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
31 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
32 | CAMBRIA E, LI Y, XING F Z, et al. SenticNet 6: ensemble application of symbolic and subsymbolic AI for sentiment analysis[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 105-114. |
33 | 余本功,张书文,高春阳. 基于局部特征聚焦的方面级情感分析[J]. 计算机应用研究, 2023, 40(3):682-688. |
YU B G, ZHANG S W, GAO C Y. Aspect-based sentiment analysis based on local feature focusing [J]. Application Research of Computers, 2023, 40(3): 682-688. | |
34 | DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2014: 49-54. |
35 | PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35. |
36 | PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis [C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495. |
37 | PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2016 task 5: aspect based sentiment analysis [C]// Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 19-30. |
38 | WANG X, LIU Y, SUN C, et al. Predicting polarities of tweets by composing word embeddings with long short-term memory[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 1343-1353. |
39 | CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 452-461. |
40 | HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]// Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, LNCS 10899. Cham: Springer, 2018: 197-206. |
41 | FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442. |
42 | ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578. |
43 | 杨先凤,汤依磊,李自强. 基于交替注意力机制和图卷积网络的方面级情感分析模型[J]. 计算机应用, 2024, 44(4):1058-1064. |
YANG X F, TANG Y L, LI Z Q. Aspect-level sentiment analysis model based on alternating attention mechanism and graph convolutional network[J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. | |
44 | WANG X, LIU P, ZHU Z, et al. Aspect-based sentiment analysis with graph convolutional networks over dependency awareness[C]// Proceedings of the 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 2238-2245. |
[1] | 王泉, 陆啟想, 施珮. 用于交通流量预测的多图扩散注意力网络[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1472-1479. |
[2] | 陈满, 杨小军, 杨慧敏. 基于图卷积网络和终点诱导的行人轨迹预测[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1480-1487. |
[3] | 张庆, 杨凡, 方宇涵. 基于多模态信息融合的中文拼写纠错算法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1528-1534. |
[4] | 杨杰, 尼玛扎西, 仁青东主, 祁晋东, 才让东知. 基于预训练模型标记器重构的藏文分词系统[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1199-1204. |
[5] | 党伟超, 宋楚君, 高改梅, 刘春霞. 基于级联残差图卷积网络的多行为推荐[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1223-1231. |
[6] | 秦小林, 古徐, 李弟诚, 徐海文. 大语言模型综述与展望[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 685-696. |
[7] | 王雅伦, 张仰森, 朱思文. 面向知识推理的位置编码标题生成模型[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 345-353. |
[8] | 富坤, 应世聪, 郑婷婷, 屈佳捷, 崔静远, 李建伟. 面向小样本节点分类的图数据增强方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 392-402. |
[9] | 吕学强, 王涛, 游新冬, 徐戈. 层次融合多元知识的命名实体识别框架——HTLR[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 40-47. |
[10] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[11] | 庞川林, 唐睿, 张睿智, 刘川, 刘佳, 岳士博. D2D通信系统中基于图卷积网络的分布式功率控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2855-2862. |
[12] | 帅奇, 王海瑞, 朱贵富. 基于双向对比训练的中文故事结尾生成模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2683-2688. |
[13] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[14] | 张全梅, 黄润萍, 滕飞, 张海波, 周南. 融合异构信息的自动国际疾病分类编码方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2476-2482. |
[15] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||