《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1472-1479.DOI: 10.11772/j.issn.1001-9081.2024050636
• 人工智能 • 上一篇
收稿日期:
2024-05-17
修回日期:
2024-08-01
接受日期:
2024-08-01
发布日期:
2024-08-20
出版日期:
2025-05-10
通讯作者:
王泉
作者简介:
王泉(1980—),男,湖北咸宁人,正高级工程师,博士,主要研究方向:车联网、工业物联网基金资助:
Quan WANG1,2(), Qixiang LU1, Pei SHI2
Received:
2024-05-17
Revised:
2024-08-01
Accepted:
2024-08-01
Online:
2024-08-20
Published:
2025-05-10
Contact:
Quan WANG
About author:
WANG Quan, born in 1980, Ph. D., professor of engineering. His research interests include internet of vehicles, industrial internet of things.Supported by:
摘要:
当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MGDAM)和时间注意力模块。首先,使用自适应时空嵌入生成器构建动态的时空信息;其次,采用最大互信息系数(MIC)矩阵与自适应矩阵挖掘细粒度的空间信息,并利用全局空间注意力机制挖掘动态的空间相关性;最后,使用时间注意力模块提取非线性的时间相关性,并通过3个模块的结合实现时空相关性的有效提取。在PEMS08数据集上的实验结果表明,MGDAN在1 h内的平均绝对误差(MAE)相较于时空自编码器(ST_AE)和时空身份信息(STID)模型分别降低了19.34%和5.74%,且整体预测性能均优于9个基线模型,能够精准地进行中长期交通流量预测,为城市交通疏导提供理论依据。
中图分类号:
王泉, 陆啟想, 施珮. 用于交通流量预测的多图扩散注意力网络[J]. 计算机应用, 2025, 45(5): 1472-1479.
Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction[J]. Journal of Computer Applications, 2025, 45(5): 1472-1479.
数据集 | 节点数 | 步长 | 采样频率/min | 目标特征 |
---|---|---|---|---|
PEMS04 | 307 | 16 992 | 5 | 交通流量 |
PEMS08 | 170 | 17 856 | 5 | 交通流量 |
表1 数据集详细信息
Tab.1 Dataset details
数据集 | 节点数 | 步长 | 采样频率/min | 目标特征 |
---|---|---|---|---|
PEMS04 | 307 | 16 992 | 5 | 交通流量 |
PEMS08 | 170 | 17 856 | 5 | 交通流量 |
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | DCRNN | 20.73 | 33.23 | 14.61 |
STGCN | 20.07 | 31.89 | 13.83 | |
Graph WaveNet | 19.52 | 30.87 | 14.57 | |
STSGCN | 21.65 | 34.01 | 14.50 | |
ASTGCN | 21.60 | 34.34 | 14.00 | |
GMAN | 19.79 | 31.58 | 14.63 | |
DDSTGCN | 19.61 | 31.05 | 13.70 | |
RGDAN | 19.25 | 32.19 | 13.12 | |
STID | 18.55 | 30.20 | 12.16 | |
ST_AE | 19.97 | 31.48 | 16.04 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | DCRNN | 16.56 | 25.79 | 12.53 |
STGCN | 16.07 | 27.83 | 11.40 | |
Graph WaveNet | 15.01 | 23.57 | 10.00 | |
STSGCN | 18.55 | 28.43 | 11.86 | |
ASTGCN | 18.41 | 28.47 | 11.00 | |
GMAN | 15.69 | 24.20 | 10.99 | |
DDSTGCN | 15.30 | 24.16 | 10.53 | |
RGDAN | 15.46 | 24.31 | 10.13 | |
STID | 14.29 | 23.59 | 9.25 | |
ST_AE | 16.70 | 25.94 | 12.04 | |
MGDAN | 13.47 | 23.13 | 8.82 |
表2 不同模型在PEMS04和PEMS08数据集上的平均性能比较
Tab.2 Average performance comparison of different models on PEMS04 and PEMS08 datasets
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | DCRNN | 20.73 | 33.23 | 14.61 |
STGCN | 20.07 | 31.89 | 13.83 | |
Graph WaveNet | 19.52 | 30.87 | 14.57 | |
STSGCN | 21.65 | 34.01 | 14.50 | |
ASTGCN | 21.60 | 34.34 | 14.00 | |
GMAN | 19.79 | 31.58 | 14.63 | |
DDSTGCN | 19.61 | 31.05 | 13.70 | |
RGDAN | 19.25 | 32.19 | 13.12 | |
STID | 18.55 | 30.20 | 12.16 | |
ST_AE | 19.97 | 31.48 | 16.04 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | DCRNN | 16.56 | 25.79 | 12.53 |
STGCN | 16.07 | 27.83 | 11.40 | |
Graph WaveNet | 15.01 | 23.57 | 10.00 | |
STSGCN | 18.55 | 28.43 | 11.86 | |
ASTGCN | 18.41 | 28.47 | 11.00 | |
GMAN | 15.69 | 24.20 | 10.99 | |
DDSTGCN | 15.30 | 24.16 | 10.53 | |
RGDAN | 15.46 | 24.31 | 10.13 | |
STID | 14.29 | 23.59 | 9.25 | |
ST_AE | 16.70 | 25.94 | 12.04 | |
MGDAN | 13.47 | 23.13 | 8.82 |
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | w/o | 19.45 | 31.26 | 13.04 |
w/o | 18.71 | 30.82 | 12.34 | |
w/o TA | 18.98 | 30.52 | 12.65 | |
w/o SA | 18.78 | 30.97 | 12.15 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | w/o | 14.87 | 25.85 | 9.71 |
w/o | 13.97 | 23.45 | 9.35 | |
w/o TA | 14.23 | 24.86 | 9.58 | |
w/o SA | 14.11 | 23.41 | 9.50 | |
MGDAN | 13.47 | 23.13 | 8.82 |
表3 消融实验结果
Tab. 3 Results of ablation experiments
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | w/o | 19.45 | 31.26 | 13.04 |
w/o | 18.71 | 30.82 | 12.34 | |
w/o TA | 18.98 | 30.52 | 12.65 | |
w/o SA | 18.78 | 30.97 | 12.15 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | w/o | 14.87 | 25.85 | 9.71 |
w/o | 13.97 | 23.45 | 9.35 | |
w/o TA | 14.23 | 24.86 | 9.58 | |
w/o SA | 14.11 | 23.41 | 9.50 | |
MGDAN | 13.47 | 23.13 | 8.82 |
数据集 | H | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | 1 | 18.91 | 30.52 | 12.65 |
2 | 18.58 | 30.36 | 12.27 | |
4 | 18.30 | 30.59 | 12.03 | |
8 | 18.46 | 30.72 | 11.78 | |
16 | 18.71 | 30.29 | 12.38 | |
PEMS08 | 1 | 13.91 | 23.27 | 10.01 |
2 | 13.70 | 23.22 | 9.20 | |
4 | 13.47 | 23.13 | 8.82 | |
8 | 13.52 | 23.17 | 8.88 | |
16 | 13.89 | 23.51 | 9.14 |
表 4 注意力头数对模型性能的影响
Tab. 4 Influence of attention head number on model performance
数据集 | H | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | 1 | 18.91 | 30.52 | 12.65 |
2 | 18.58 | 30.36 | 12.27 | |
4 | 18.30 | 30.59 | 12.03 | |
8 | 18.46 | 30.72 | 11.78 | |
16 | 18.71 | 30.29 | 12.38 | |
PEMS08 | 1 | 13.91 | 23.27 | 10.01 |
2 | 13.70 | 23.22 | 9.20 | |
4 | 13.47 | 23.13 | 8.82 | |
8 | 13.52 | 23.17 | 8.88 | |
16 | 13.89 | 23.51 | 9.14 |
模型 | 计算时间 | |
---|---|---|
每轮训练的时间/s | 推理时间/s | |
DCRNN | 121.3 | 12.5 |
GMAN | 210.6 | 14.7 |
DDSTGCN | 60.2 | 4.5 |
RGDAN | 122.3 | 4.8 |
MGDAN | 86.8 | 5.8 |
表 5 PEMS08数据集上的计算时间
Tab. 5 Computing time on PEMS08 dataset
模型 | 计算时间 | |
---|---|---|
每轮训练的时间/s | 推理时间/s | |
DCRNN | 121.3 | 12.5 |
GMAN | 210.6 | 14.7 |
DDSTGCN | 60.2 | 4.5 |
RGDAN | 122.3 | 4.8 |
MGDAN | 86.8 | 5.8 |
1 | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. [2024-01-19]. . |
2 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2018: 3634-3640. |
3 | SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 914-921. |
4 | LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4189-4196. |
5 | NI Q, ZHANG M. STGMN: a gated multi-graph convolutional network framework for traffic flow prediction[J]. Applied Intelligence, 2022, 52(13): 15026-15039. |
6 | YU K, QIN X, JIA Z, et al. Cross-attention fusion based spatial-temporal multi-graph convolutional network for traffic flow prediction[J]. Sensors, 2021, 21(24): No.8468. |
7 | BAO Y, HUANG J, SHEN Q, et al. Spatial-temporal complex graph convolution network for traffic flow prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 121: No.106044. |
8 | HAN L, DU B, SUN L, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 547-555. |
9 | SUN Y, JIANG X, HU Y, et al. Dual dynamic spatial-temporal graph convolution network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23680-23693. |
10 | BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17804-17815. |
11 | 徐丽,符祥远,李浩然.基于门控卷积的时空交通流预测模型[J].计算机应用,2023,43(9):2760-2765. |
XU L, FU X Y, LI H R. Spatio-temporal traffic flow prediction model based on gated convolution[J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. | |
12 | ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. |
13 | 顾焰杰,张英俊,刘晓倩,等.基于时空多图融合的交通流量预测[J].计算机应用,2024,44(8):2618-2625. |
GU Y J, ZHANG Y J, LIU X Q, et al. Traffic flow forecasting via spatio-temporal multi-graph fusion[J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | |
14 | CHEN L, SHI P, LI G, et al. Traffic flow prediction using multi-view graph convolution and masked attention mechanism[J]. Computer Communications, 2022, 194: 446-457. |
15 | WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2019: 1907-1913. |
16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
17 | LIU M, ZHU T, YE J, et al. Spatio-temporal AutoEncoder for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5516-5526. |
18 | SHAO Z, ZHANG Z, WANG F, et al. Spatial-temporal identity: a simple yet effective baseline for multivariate time series forecasting[C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 4454-4458. |
19 | ZHANG H, WANG H, CHEN L, et al. Traffic flow forecasting based on Transformer with diffusion graph attention network[J]. International Journal of Automotive Technology, 2024, 25(3):455-468. |
20 | SU J, JIN Z, REN J, et al. GDFormer: a graph diffusing attention based approach for traffic flow prediction[J]. Pattern Recognition Letters, 2022,156: 126-132. |
21 | ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 1234-1241. |
22 | FAN J, WENG W, TIAN H, et al. RGDAN: a random graph diffusion attention network for traffic prediction[J]. Neural Networks, 2024, 172: No.106093. |
23 | CHEN C, PETTY K, SKABARDONIS A, et al. Freeway performance measurement system: mining loop detector data[J]. Transportation Research Record, 2001, 1748(1): 96-102. |
24 | GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 922-929. |
[1] | 党伟超, 宋楚君, 高改梅, 刘春霞. 基于级联残差图卷积网络的多行为推荐[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1223-1231. |
[2] | 李嘉欣, 莫思特. 基于MiniRBT-LSTM-GAT与标签平滑的台区电力工单分类[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1356-1362. |
[3] | 富坤, 应世聪, 郑婷婷, 屈佳捷, 崔静远, 李建伟. 面向小样本节点分类的图数据增强方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 392-402. |
[4] | 胡健鹏, 张立臣. 面向多时间步风功率预测的深度时空网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 98-105. |
[5] | 朱亮, 慕京哲, 左洪强, 谷晶中, 朱付保. 基于联邦图神经网络的位置隐私保护推荐方案[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 136-143. |
[6] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[7] | 庞川林, 唐睿, 张睿智, 刘川, 刘佳, 岳士博. D2D通信系统中基于图卷积网络的分布式功率控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2855-2862. |
[8] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[9] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[10] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[11] | 柯添赐, 刘建华, 孙水华, 郑智雄, 蔡子杰. 融合强关联依赖和简洁语法的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1786-1795. |
[12] | 黎施彬, 龚俊, 汤圣君. 基于Graph Transformer的半监督异配图表示学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1816-1823. |
[13] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
[14] | 王铂越, 李英祥, 钟剑丹. 基于改进Res-UNet的昼夜地基云图分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1310-1316. |
[15] | 高龙涛, 李娜娜. 基于方面感知注意力增强的方面情感三元组抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1049-1057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||