1 |
甘海涛. 半监督聚类与分类算法研究[D]. 武汉:华中科技大学, 2014: 5-7.
|
|
GAN H T. Research on semi-supervised clustering and classification algorithm [D]. Wuhan: Huazhong University of Science and Technology, 2014: 5-7.
|
2 |
王卫东. 基于自监督学习和深度关系网络的SAR图像变化检测[D]. 西安: 西安电子科技大学, 2021:8-10.
|
|
WANG W D. SAR image change detection based on self-supervised learning and deep relation network [D]. Xi’an: Xidian University, 2021: 8-10.
|
3 |
彭超. 基于自监督学习和迁移学习的CT图像肺结节分类研究[D]. 重庆:重庆大学, 2021:14-15.
|
|
PENG C. Research on lung nodule classification in CT image based on self-supervised learning and transfer learning [D]. Chongqing: Chongqing University, 2021:14-15.
|
4 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
ZHOU Z H. Machine learning [M]. Beijing: Tsinghua University Press, 2016.
|
5 |
LIU X, ZHANG F, HOU Z, et al. Self-supervised learning: generative or contrastive [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876.
|
6 |
JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning [J]. Technologies, 2020, 9(1): No.2.
|
7 |
张春昊, 解滨,张喜梅,等. 一种结合自适应近邻与密度峰值的加权模糊聚类算法[J]. 小型微型计算机系统, 2023, 44(9): 1974-1982.
|
|
ZHANG C H, XIE B, ZHANG X M, et al. Weighted fuzzy clustering algorithm combining adaptive nearest neighbors and density peaks [J]. Journal of Chinese Computer Systems, 2023, 44(9): 1974-1982.
|
8 |
NOROOZI M, VINJIMOOR A, FAVARO P, et al. Boosting self-supervised learning via knowledge transfer [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9359-9367.
|
9 |
WU L, LIN H, TAN C, et al. Self-supervised learning on graphs: contrastive, generative, or predictive [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4216-4235.
|
10 |
JI J, WANG J, HUANG C, et al. Spatio-temporal self-supervised learning for traffic flow prediction [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 4356-4364.
|
11 |
RANI V, NABI S T, KUMAR M, et al. Self-supervised learning: a succinct review [J]. Archives of Computational Methods in Engineering, 2023, 30(4): 2761-2775.
|
12 |
DENIZE J, RABARISOA J, ORCESI A, et al. Similarity contrastive estimation for self-supervised soft contrastive learning[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 2705-2715.
|
13 |
SHWARTZ ZIV R, LeCUN Y. To compress or not to compress self-supervised learning and information theory: a review [J]. Entropy, 2024, 26(3): No.252.
|
14 |
代雨柔. 基于自监督学习的用户轨迹分析[D]. 成都:电子科技大学, 2022: 20.
|
|
DAI Y R. Human trajectory analysis based on self-supervised learning [D]. Chengdu: University of Electronic Science and Technology of China, 2022: 20.
|
15 |
ARIK S Ö, PFISTER T. TabNet: attentive interpretable tabular learning [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 6679-6687.
|
16 |
UÇAR T, HAJIRAMEZANALI E, EDWARDS L. SubTab: subsetting features of tabular data for self-supervised representation learning [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 18853-18865.
|
17 |
DUA D, GRAFF C. The UCI machine learning repository [DB/OL]. [2023-08-13]. .
|
18 |
HU H, LIU J, ZHANG X, et al. An effective and adaptable K-means algorithm for big data cluster analysis [J]. Pattern Recognition, 2023, 139: No.109404.
|
19 |
DENG D. DBSCAN clustering algorithm based on density [C]// Proceedings of the 7th International Forum on Electrical Engineering and Automation. Piscataway: IEEE, 2020: 949-953.
|
20 |
LI W, WANG Z, SUN W, et al. An ensemble clustering framework based on hierarchical clustering ensemble selection and clusters clustering [J]. Cybernetics and Systems, 2023, 54(5): 741-766.
|
21 |
ZHAO Z, RUI Z, DUAN X. Feature selection for binary classification based on class labeling, SOM, and hierarchical clustering [J]. Measurement and Control, 2023, 56(9/10): 1649-1669.
|
22 |
SINAGA T H, WANTO A, GUNAWAN I, et al. Implementation of data mining using C4.5 algorithm on customer satisfaction in Tirta Lihou PDAM [J]. Journal of Computer Networks, Architecture and High Performance Computing, 2021, 3(1): 9-20.
|
23 |
UDDIN S, HAQUE I, LU H, et al. Comparative performance analysis of K-Nearest Neighbour (KNN) algorithm and its different variants for disease prediction [J]. Scientific Reports, 2022, 12: No.6256.
|
24 |
AL-JARRAH R, AL-OQLA F M. A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing [J]. Composite Structures, 2022, 289: No.115475.
|
25 |
WANG H, LI G, WANG Z. Fast SVM classifier for large-scale classification problems [J]. Information Sciences, 2023, 642: No.119136.
|