《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1387-1394.DOI: 10.11772/j.issn.1001-9081.2024060882
• 第十届中国数据挖掘会议 • 上一篇
收稿日期:2024-07-03
									
				
											修回日期:2024-07-28
									
				
											接受日期:2024-08-02
									
				
											发布日期:2024-12-04
									
				
											出版日期:2025-05-10
									
				
			通讯作者:
					高超
							作者简介:罗蒙(2000—),男,陕西汉中人,硕士研究生,CCF学生会员,主要研究方向:多目标优化、进化计算基金资助:
        
                                                                                                            Meng LUO1, Chao GAO2( ), Zhen WANG3
), Zhen WANG3
			  
			
			
			
                
        
    
Received:2024-07-03
									
				
											Revised:2024-07-28
									
				
											Accepted:2024-08-02
									
				
											Online:2024-12-04
									
				
											Published:2025-05-10
									
			Contact:
					Chao GAO   
							About author:LUO Meng, born in 2000, M. S. candidate. His research interests include multi-objective optimization, evolutionary computing.Supported by:摘要:
针对现有启发式算法在解决大规模多车场车辆路径规划问题(MDVRP)时存在的初始解质量较差的缺点,提出一种基于带约束谱聚类(CSC)的启发式车辆路径规划算法优化方法。首先,根据待配送客户点的地理位置和需求量生成配送点的地理信息特征矩阵和需求信息特征矩阵;其次,根据地理信息特征矩阵和需求信息特征矩阵生成CSC的约束矩阵,并完成聚类操作;最后,使用谱聚类的结果生成启发式算法的初始解,选择合适的启发式算法完成车辆路径规划问题(VRP)的求解。在标准数据集的21个算例上的实验结果显示,CSC相较于SCSC(Self-Constrained-Spectral-Clustering)在标准化互信息(NMI)和Fowlkes-Mallows指数(FMI)上分别提升了18.75%和31.18%;在车辆路径规划任务中,使用CSC进行初始化的启发式算法在21个不同规模算例中的16个算例上求得了最短路径,并且启发式算法的运行时间相较于使用SCSC缩短了13.05%。实验结果表明,CSC能够有效提高客户点的聚类精度,进而能够有效提高VRP的求解速度和解的精度。
中图分类号:
罗蒙, 高超, 王震. 基于带约束谱聚类的启发式车辆路径规划算法优化方法[J]. 计算机应用, 2025, 45(5): 1387-1394.
Meng LUO, Chao GAO, Zhen WANG. Improvement method of heuristic vehicle routing algorithm based on constrained spectral clustering[J]. Journal of Computer Applications, 2025, 45(5): 1387-1394.
| 算例 | 客户点数 | 车场数 | 车辆数 | 车辆最大承载量 | 
|---|---|---|---|---|
| P01 | 50 | 4 | 4 | 80 | 
| P02 | 50 | 4 | 2 | 160 | 
| P03 | 75 | 5 | 3 | 140 | 
| P04 | 100 | 2 | 8 | 100 | 
| P05 | 100 | 2 | 5 | 200 | 
| P06 | 100 | 3 | 6 | 100 | 
| P07 | 100 | 4 | 4 | 100 | 
| P08 | 249 | 2 | 14 | 500 | 
| P09 | 249 | 3 | 12 | 500 | 
| P10 | 249 | 4 | 8 | 500 | 
| P11 | 249 | 5 | 6 | 500 | 
| P12 | 80 | 2 | 5 | 60 | 
| P13 | 80 | 2 | 5 | 60 | 
| P14 | 80 | 2 | 5 | 60 | 
| P23 | 360 | 9 | 5 | 60 | 
| Pr01 | 48 | 4 | 1 | 200 | 
| Pr02 | 96 | 4 | 2 | 195 | 
| Pr03 | 144 | 4 | 3 | 190 | 
| Pr04 | 192 | 4 | 4 | 185 | 
| Pr08 | 144 | 6 | 2 | 190 | 
| Pr09 | 216 | 6 | 3 | 180 | 
表1 各算例主要特征
Tab. 1 Main characteristics of each instance
| 算例 | 客户点数 | 车场数 | 车辆数 | 车辆最大承载量 | 
|---|---|---|---|---|
| P01 | 50 | 4 | 4 | 80 | 
| P02 | 50 | 4 | 2 | 160 | 
| P03 | 75 | 5 | 3 | 140 | 
| P04 | 100 | 2 | 8 | 100 | 
| P05 | 100 | 2 | 5 | 200 | 
| P06 | 100 | 3 | 6 | 100 | 
| P07 | 100 | 4 | 4 | 100 | 
| P08 | 249 | 2 | 14 | 500 | 
| P09 | 249 | 3 | 12 | 500 | 
| P10 | 249 | 4 | 8 | 500 | 
| P11 | 249 | 5 | 6 | 500 | 
| P12 | 80 | 2 | 5 | 60 | 
| P13 | 80 | 2 | 5 | 60 | 
| P14 | 80 | 2 | 5 | 60 | 
| P23 | 360 | 9 | 5 | 60 | 
| Pr01 | 48 | 4 | 1 | 200 | 
| Pr02 | 96 | 4 | 2 | 195 | 
| Pr03 | 144 | 4 | 3 | 190 | 
| Pr04 | 192 | 4 | 4 | 185 | 
| Pr08 | 144 | 6 | 2 | 190 | 
| Pr09 | 216 | 6 | 3 | 180 | 
| 参数 | 含义 | 取值 | 
|---|---|---|
| 约束矩阵系数 | 0.9 | |
| 边界点界定阈值 | 0.3 | |
| 需求信息界定上界 | ||
| 需求信息界定下界 | 0.25 | |
| 地理信息权重 | 0.8 | 
表2 CSC的超参数符号、含义及取值
Tab. 2 Symbols, meanings, and values of hyper-parameters of CSC
| 参数 | 含义 | 取值 | 
|---|---|---|
| 约束矩阵系数 | 0.9 | |
| 边界点界定阈值 | 0.3 | |
| 需求信息界定上界 | ||
| 需求信息界定下界 | 0.25 | |
| 地理信息权重 | 0.8 | 
| 算例 | NMI | |||
|---|---|---|---|---|
| FCM | SCSC | K-means | 本文方法 | |
| P01 | 0.660 8 | 0.670 0 | 0.451 0 | 0.792 2 | 
| P02 | 0.461 2 | 0.515 2 | 0.707 7 | 0.459 3 | 
| P03 | 0.494 7 | 0.558 3 | 0.566 2 | 0.744 0 | 
| P04 | 0.635 0 | 0.257 9 | 0.635 0 | 0.761 0 | 
| P05 | 0.530 0 | 0.261 1 | 0.000 8 | 0.454 0 | 
| P06 | 0.688 2 | 0.543 9 | 0.748 7 | 0.536 4 | 
| P07 | 0.509 4 | 0.500 0 | 0.509 8 | 0.586 5 | 
| P08 | 0.741 1 | 0.358 7 | 0.022 9 | 0.766 8 | 
| P09 | 0.501 4 | 0.434 2 | 0.501 4 | 0.654 6 | 
| P10 | 0.565 3 | 0.550 0 | 0.380 7 | 0.735 2 | 
| P11 | 0.554 9 | 0.532 6 | 0.591 4 | 0.743 2 | 
| P12 | 0.713 6 | 0.711 0 | 0.713 6 | 0.722 4 | 
| P13 | 0.713 6 | 0.721 0 | 0.713 6 | 0.722 4 | 
| P14 | 0.831 3 | 0.779 1 | 0.831 3 | 0.855 6 | 
| P23 | 0.688 0 | 0.878 5 | 0.640 8 | 0.894 0 | 
| Pr01 | 0.580 3 | 0.700 7 | 0.547 3 | 0.751 8 | 
| Pr02 | 0.522 4 | 0.626 3 | 0.497 1 | 0.667 9 | 
| Pr03 | 0.666 0 | 0.741 3 | 0.683 5 | 0.759 1 | 
| Pr04 | 0.559 3 | 0.777 0 | 0.464 6 | 0.745 5 | 
| Pr08 | 0.383 6 | 0.548 7 | 0.428 5 | 0.605 2 | 
| Pr09 | 0.565 9 | 0.717 0 | 0.583 8 | 0.747 0 | 
表3 不同聚类方法在MDVRP数据集上的NMI
Tab. 3 NMIs of different clustering methods on MDVRP dataset
| 算例 | NMI | |||
|---|---|---|---|---|
| FCM | SCSC | K-means | 本文方法 | |
| P01 | 0.660 8 | 0.670 0 | 0.451 0 | 0.792 2 | 
| P02 | 0.461 2 | 0.515 2 | 0.707 7 | 0.459 3 | 
| P03 | 0.494 7 | 0.558 3 | 0.566 2 | 0.744 0 | 
| P04 | 0.635 0 | 0.257 9 | 0.635 0 | 0.761 0 | 
| P05 | 0.530 0 | 0.261 1 | 0.000 8 | 0.454 0 | 
| P06 | 0.688 2 | 0.543 9 | 0.748 7 | 0.536 4 | 
| P07 | 0.509 4 | 0.500 0 | 0.509 8 | 0.586 5 | 
| P08 | 0.741 1 | 0.358 7 | 0.022 9 | 0.766 8 | 
| P09 | 0.501 4 | 0.434 2 | 0.501 4 | 0.654 6 | 
| P10 | 0.565 3 | 0.550 0 | 0.380 7 | 0.735 2 | 
| P11 | 0.554 9 | 0.532 6 | 0.591 4 | 0.743 2 | 
| P12 | 0.713 6 | 0.711 0 | 0.713 6 | 0.722 4 | 
| P13 | 0.713 6 | 0.721 0 | 0.713 6 | 0.722 4 | 
| P14 | 0.831 3 | 0.779 1 | 0.831 3 | 0.855 6 | 
| P23 | 0.688 0 | 0.878 5 | 0.640 8 | 0.894 0 | 
| Pr01 | 0.580 3 | 0.700 7 | 0.547 3 | 0.751 8 | 
| Pr02 | 0.522 4 | 0.626 3 | 0.497 1 | 0.667 9 | 
| Pr03 | 0.666 0 | 0.741 3 | 0.683 5 | 0.759 1 | 
| Pr04 | 0.559 3 | 0.777 0 | 0.464 6 | 0.745 5 | 
| Pr08 | 0.383 6 | 0.548 7 | 0.428 5 | 0.605 2 | 
| Pr09 | 0.565 9 | 0.717 0 | 0.583 8 | 0.747 0 | 
| 算例 | FMI | |||
|---|---|---|---|---|
| FCM | SCSC | K-means | 本文方法 | |
| P01 | 0.578 9 | 0.572 5 | 0.578 9 | 0.678 3 | 
| P02 | 0.686 3 | 0.378 3 | 0.653 8 | 0.525 2 | 
| P03 | 0.565 5 | 0.465 4 | 0.646 0 | 0.737 1 | 
| P04 | 0.675 9 | 0.640 0 | 0.801 2 | 0.921 9 | 
| P05 | 0.518 9 | 0.226 2 | 0.494 1 | 0.769 8 | 
| P06 | 0.825 3 | 0.806 9 | 0.843 8 | 0.658 7 | 
| P07 | 0.501 7 | 0.541 3 | 0.501 7 | 0.583 1 | 
| P08 | 0.838 1 | 0.845 4 | 0.636 8 | 0.930 1 | 
| P09 | 0.690 2 | 0.515 0 | 0.711 1 | 0.670 2 | 
| P10 | 0.491 2 | 0.058 3 | 0.484 8 | 0.601 3 | 
| P11 | 0.551 1 | 0.337 4 | 0.562 1 | 0.764 3 | 
| P12 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 | 
| P13 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 | 
| P14 | 0.950 0 | 0.950 0 | 0.950 0 | 0.950 1 | 
| P23 | 0.752 5 | 0.100 0 | 0.734 8 | 0.761 0 | 
| Pr01 | 0.901 7 | 0.617 3 | 0.885 7 | 0.891 1 | 
| Pr02 | 0.671 6 | 0.711 5 | 0.619 7 | 0.633 9 | 
| Pr03 | 0.641 1 | 0.852 7 | 0.641 3 | 0.633 9 | 
| Pr04 | 0.786 4 | 0.906 7 | 0.773 5 | 0.815 6 | 
| Pr08 | 0.883 4 | 0.130 4 | 0.593 7 | 0.799 7 | 
| Pr09 | 0.420 4 | 0.491 5 | 0.517 8 | 0.606 7 | 
表4 不同聚类方法在MDVRP数据集上的FMI
Tab. 4 FMIs of different clustering methods on MDVRP dataset
| 算例 | FMI | |||
|---|---|---|---|---|
| FCM | SCSC | K-means | 本文方法 | |
| P01 | 0.578 9 | 0.572 5 | 0.578 9 | 0.678 3 | 
| P02 | 0.686 3 | 0.378 3 | 0.653 8 | 0.525 2 | 
| P03 | 0.565 5 | 0.465 4 | 0.646 0 | 0.737 1 | 
| P04 | 0.675 9 | 0.640 0 | 0.801 2 | 0.921 9 | 
| P05 | 0.518 9 | 0.226 2 | 0.494 1 | 0.769 8 | 
| P06 | 0.825 3 | 0.806 9 | 0.843 8 | 0.658 7 | 
| P07 | 0.501 7 | 0.541 3 | 0.501 7 | 0.583 1 | 
| P08 | 0.838 1 | 0.845 4 | 0.636 8 | 0.930 1 | 
| P09 | 0.690 2 | 0.515 0 | 0.711 1 | 0.670 2 | 
| P10 | 0.491 2 | 0.058 3 | 0.484 8 | 0.601 3 | 
| P11 | 0.551 1 | 0.337 4 | 0.562 1 | 0.764 3 | 
| P12 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 | 
| P13 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 | 
| P14 | 0.950 0 | 0.950 0 | 0.950 0 | 0.950 1 | 
| P23 | 0.752 5 | 0.100 0 | 0.734 8 | 0.761 0 | 
| Pr01 | 0.901 7 | 0.617 3 | 0.885 7 | 0.891 1 | 
| Pr02 | 0.671 6 | 0.711 5 | 0.619 7 | 0.633 9 | 
| Pr03 | 0.641 1 | 0.852 7 | 0.641 3 | 0.633 9 | 
| Pr04 | 0.786 4 | 0.906 7 | 0.773 5 | 0.815 6 | 
| Pr08 | 0.883 4 | 0.130 4 | 0.593 7 | 0.799 7 | 
| Pr09 | 0.420 4 | 0.491 5 | 0.517 8 | 0.606 7 | 
| 算例 | VNTS | VNTS+FCM | VNTS+SCSC | VNTS+K‑means | VNTS+ 本文方法 | 
|---|---|---|---|---|---|
| P01 | 617.77 | 613.27 | 639.93 | 669.43 | 596.28 | 
| P02 | 560.44 | 490.27 | 547.42 | 525.12 | 480.92 | 
| P03 | 810.18 | 677.65 | 706.99 | 848.63 | 666.73 | 
| P04 | 930.97 | 835.40 | 869.89 | 1 114.12 | 825.49 | 
| P05 | 945.04 | 843.86 | 831.75 | 946.39 | 824.74 | 
| P06 | 1 114.44 | 937.47 | 999.27 | 944.71 | 1 215.12 | 
| P07 | 1 229.57 | 994.31 | 941.05 | 976.28 | 960.56 | 
| P08 | 6 532.82 | 4 900.05 | 5 369.90 | 6 333.45 | 4 780.93 | 
| P09 | 6 511.97 | 5 292.26 | 4 424.95 | 4 733.89 | 5 836.72 | 
| P10 | 4 657.70 | 4 176.38 | 5 025.39 | 5 882.19 | 4 062.10 | 
| P11 | 6 188.19 | 5 176.19 | 4 048.94 | 4 507.12 | 4 114.79 | 
| P12 | 1 828.98 | 1 510.03 | 1 502.40 | 1 534.93 | 1 483.59 | 
| P13 | 1 821.88 | 1 559.92 | 1 520.24 | 1 569.45 | 1 511.34 | 
| P14 | 1 856.17 | 1 510.03 | 1 578.91 | 1 559.92 | 1 476.88 | 
| P23 | 6 983.64 | 6 805.78 | 6 945.38 | 6 995.21 | 6 805.78 | 
| Pr01 | 1 018.66 | 912.59 | 1 036.02 | 1 076.4 | 876.39 | 
| Pr02 | 1 795.43 | 1 559.34 | 1 565.68 | 1 542.31 | 1 559.34 | 
| Pr03 | 2 476.77 | 2 026.65 | 1 934.31 | 2 042.95 | 1 899.27 | 
| Pr04 | 3 121.45 | 2 524.92 | 2 534.97 | 2 662.12 | 2 524.92 | 
| Pr08 | 2 523.44 | 1 951.20 | 2 004.80 | 2 264.29 | 1 951.20 | 
| Pr09 | 3 699.00 | 3 615.03 | 2 461.17 | 3 031.45 | 2 801.55 | 
表5 不同聚类方法结合VNTS在MDVRP数据集上的最短路径长度
Tab. 5 The shortest route lengths of different clustering methods combined with VNTS algorithm on MDVRP dataset
| 算例 | VNTS | VNTS+FCM | VNTS+SCSC | VNTS+K‑means | VNTS+ 本文方法 | 
|---|---|---|---|---|---|
| P01 | 617.77 | 613.27 | 639.93 | 669.43 | 596.28 | 
| P02 | 560.44 | 490.27 | 547.42 | 525.12 | 480.92 | 
| P03 | 810.18 | 677.65 | 706.99 | 848.63 | 666.73 | 
| P04 | 930.97 | 835.40 | 869.89 | 1 114.12 | 825.49 | 
| P05 | 945.04 | 843.86 | 831.75 | 946.39 | 824.74 | 
| P06 | 1 114.44 | 937.47 | 999.27 | 944.71 | 1 215.12 | 
| P07 | 1 229.57 | 994.31 | 941.05 | 976.28 | 960.56 | 
| P08 | 6 532.82 | 4 900.05 | 5 369.90 | 6 333.45 | 4 780.93 | 
| P09 | 6 511.97 | 5 292.26 | 4 424.95 | 4 733.89 | 5 836.72 | 
| P10 | 4 657.70 | 4 176.38 | 5 025.39 | 5 882.19 | 4 062.10 | 
| P11 | 6 188.19 | 5 176.19 | 4 048.94 | 4 507.12 | 4 114.79 | 
| P12 | 1 828.98 | 1 510.03 | 1 502.40 | 1 534.93 | 1 483.59 | 
| P13 | 1 821.88 | 1 559.92 | 1 520.24 | 1 569.45 | 1 511.34 | 
| P14 | 1 856.17 | 1 510.03 | 1 578.91 | 1 559.92 | 1 476.88 | 
| P23 | 6 983.64 | 6 805.78 | 6 945.38 | 6 995.21 | 6 805.78 | 
| Pr01 | 1 018.66 | 912.59 | 1 036.02 | 1 076.4 | 876.39 | 
| Pr02 | 1 795.43 | 1 559.34 | 1 565.68 | 1 542.31 | 1 559.34 | 
| Pr03 | 2 476.77 | 2 026.65 | 1 934.31 | 2 042.95 | 1 899.27 | 
| Pr04 | 3 121.45 | 2 524.92 | 2 534.97 | 2 662.12 | 2 524.92 | 
| Pr08 | 2 523.44 | 1 951.20 | 2 004.80 | 2 264.29 | 1 951.20 | 
| Pr09 | 3 699.00 | 3 615.03 | 2 461.17 | 3 031.45 | 2 801.55 | 
| 1 | DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Science Management, 1959, 6(1): 80-91. | 
| 2 | GIBBS H, LIU Y, PEARSON C A B, et al. Changing travel patterns in China during the early stages of the COVID-19 pandemic[J]. Nature Communications, 2020, 11(1): No.5012. | 
| 3 | LI J Y, DENG X Y, ZHAN Z H, et al. A multipopulation multiobjective ant colony system considering travel and prevention costs for vehicle routing in COVID-19-like epidemics[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25062-25076. | 
| 4 | TILLMAN F A. The multiple terminal delivery problem with probabilistic demands[J]. Transportation Science, 1969, 3(3): 192-204. | 
| 5 | MONTOYA-TORRES J R, FRANCO J L, ISAZA S N, et al. A literature review on the vehicle routing problem with multiple depots[J]. Computers and Industrial Engineering, 2015, 79: 115-129. | 
| 6 | TAŞ D, GENDREAU M, DELLAERT N, et al. Vehicle routing with soft time windows and stochastic travel times: a column generation and branch-and-price solution approach[J]. European Journal of Operational Research, 2014, 236(3): 789-799. | 
| 7 | DABIA S, ROPKE S, VAN WOENSEL T, et al. Branch and price for the time-dependent vehicle routing problem with time windows[J]. Transportation Science, 2013, 47(3): 380-396. | 
| 8 | HERNANDEZ F, FEILLET D, GIROUDEAU R, et al. Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows[J]. European Journal of Operational Research, 2016, 249(2): 551-559. | 
| 9 | MAK V, ERNST A T. New cutting-planes for the time-and/or precedence-constrained ATSP and directed VRP[J]. Mathematical Methods of Operations Research, 2007, 66(1): 69-98. | 
| 10 | KALLEHAUGE B, LARSEN J, MADSEN O B G. Lagrangian duality applied to the vehicle routing problem with time windows[J]. Computers and Operations Research, 2006, 33(5): 1464-1487. | 
| 11 | MAHMOUDI M, ZHOU X. Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: a dynamic programming approach based on state-space-time network representations[J]. Transportation Research Part B: Methodological, 2016, 89: 19-42. | 
| 12 | PRABU U, RAVISASTHIRI P, SRIRAM R, et al. EODVGA: an enhanced ODV based genetic algorithm for multi-depot vehicle routing problem[J]. EAI Endorsed Transactions on Scalable Information Systems, 2019, 6(21): No.e8. | 
| 13 | LI Y, SOLEIMANI H, ZOHAL M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives[J]. Journal of Cleaner Production, 2019, 227: 1161-1172. | 
| 14 | STODOLA P, NOHEL J. Adaptive ant colony optimization with node clustering for the multi-depot vehicle routing problem[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1866-1880. | 
| 15 | KACHITVICHYANUKUL V, SOMBUNTHAM P, KUNNAPAPDEELERT S. Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO[J]. Computers and Industrial Engineering, 2015, 89: 125-136. | 
| 16 | DE OLIVEIRA F B, ENAYATIFAR R, SADAEI H J, et al. A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem[J]. Expert Systems with Applications, 2016, 43: 117-130. | 
| 17 | 彭熙舜,陆安江,贾明俊,等.利用Kmeans与蚁群算法的路径寻优方法[J].智能计算机与应用,2021,11(4):17-20. | 
| PENG X S, LU A J, JIA M J, et al. Path optimization method using Kmeans and ant colony algorithm[J]. Intelligent Computer and Applications, 2021, 11(4): 17-20. | |
| 18 | CALVET L, FERRER A, GOMES M I, et al. Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation[J]. Computers and Industrial Engineering, 2016, 94: 93-104. | 
| 19 | MAHMUD N, HAQUE M M. Solving multiple depot vehicle routing problem (MDVRP) using genetic algorithm [C]//Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering. Piscataway: IEEE, 2019: 1-6. | 
| 20 | SHALABY M A W, MOHAMMED A, KASSEM S. Supervised fuzzy c-means techniques to solve the capacitated vehicle routing problem[J]. The International Arab Journal of Information Technology, 2021, 18(3A): 452-463. | 
| 21 | LV C, ZHANG C, LIAN K, et al. A two-echelon fuzzy clustering based heuristic for large-scale bike sharing repositioning problem[J]. Transportation Research Part B: Methodological, 2022, 160: 54-75. | 
| 22 | ALLAHYARI S, SALARI M, VIGO D. A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem[J]. European Journal of Operational Research, 2015, 242(3): 756-768. | 
| 23 | KUO Y, WANG C C. A variable neighborhood search for the multi-depot vehicle routing problem with loading cost[J]. Expert Systems with Applications, 2012, 39(8): 6949-6954. | 
| 24 | WREN A, HOLLIDAY A. Computer scheduling of vehicles from one or more depots to a number of delivery points[J]. Journal of the Operational Research Society, 1972, 23(3): 333-344. | 
| 25 | GILLETT B E, JOHNSON J G. Multi-terminal vehicle-dispatch algorithm[J]. Omega, 1976, 4(6): 711-718. | 
| 26 | RENAUD J, LAPORTE G, BOCTOR F F. A tabu search heuristic for the multi-depot vehicle routing problem[J]. Computers and Operations Research, 1996, 23(3): 229-235. | 
| 27 | CREVIER B, CORDEAU J F, LAPORTE G. The multi-depot vehicle routing problem with inter-depot routes[J]. European Journal of Operational Research, 2007, 176(2): 756-773. | 
| 28 | HO W, HO G T S, JI P, et al. A hybrid genetic algorithm for the multi-depot vehicle routing problem[J]. Engineering Applications of Artificial Intelligence, 2008, 21(4): 548-557. | 
| 29 | SUREKHA P, SUMATHI S. Application of particle swarm optimization for solving multi-depot vehicle routing problems[J]. International Journal of Artificial Intelligent Systems and Machine Learning, 2011, 3(11): 677-686. | 
| 30 | STODOLA P. Hybrid ant colony optimization algorithm applied to the multi-depot vehicle routing problem[J]. Natural Computing, 2020, 19(2): 463-475. | 
| 31 | WANG X, CHOI T M, LIU H, et al. Novel ant colony optimization methods for simplifying solution construction in vehicle routing problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(11): 3132-3141. | 
| 32 | GU Z, ZHU Y, WANG Y, et al. Applying artificial bee colony algorithm to the multidepot vehicle routing problem[J]. Software: Practice and Experience, 2022, 52(3): 756-771. | 
| 33 | MOSTAFA N, ELTAWIL A. Solving the heterogeneous capacitated vehicle routing problem using K-means clustering and valid inequalities [C]// Proceedings of the 2017 International Conference on Industrial Engineering and Operations Management. Southfield, MI: IEOM Society International, 2017: 2239-2249. | 
| 34 | SINGANAMALA P, REDDY K D, VENKATARAMAIAH P. Solution to a multi depot vehicle routing problem using K-means algorithm, Clarke and Wright algorithm and ant colony optimization[J]. International Journal of Applied Engineering Research, 2018, 13(21): 15236-15246. | 
| 35 | ZHU J. Solving capacitated vehicle routing problem by an improved genetic algorithm with fuzzy C-means clustering[J]. Scientific Programming, 2022, 2022: No.8514660. | 
| 36 | SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. | 
| 37 | BAI L, LIANG J, ZHAO Y. Self-constrained spectral clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5126-5138. | 
| 38 | MOLINA J C, EGUIA I, RACERO J. Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study[J]. TOP, 2019, 27(2): 253-287. | 
| 39 | LI J, LI T, YU Y, et al. Discrete firefly algorithm with compound neighborhoods for asymmetric multi-depot vehicle routing problem in the maintenance of farm machinery[J]. Applied Soft Computing, 2019, 81: No.105460. | 
| 40 | SADATI M E H, ÇATAY B, AKSEN D. An efficient variable neighborhood search with tabu shaking for a class of multi-depot vehicle routing problems[J]. Computers and Operations Research, 2021, 133: No.105269. | 
| 41 | PISINGER D, ROPKE S. A general heuristic for vehicle routing problems[J]. Computers and Operations Research, 2007, 34(8): 2403-2435. | 
| 42 | FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American Statistical Association, 1983, 78(383): 553-569. | 
| [1] | 丁雨, 张瀚霖, 罗荣, 孟华. 基于信念子簇切割的模糊聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1128-1138. | 
| [2] | 郭新明, 刘蕊, 谢飞, 林德钰. 无线视频传感器网络β-QoM目标栅栏覆盖构建算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2877-2884. | 
| [3] | 高智慧, 韩萌, 刘淑娟, 李昂, 穆栋梁. 基于智能优化算法的高效用项集挖掘方法综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1676-1686. | 
| [4] | 马志峰, 于俊洋, 王龙葛. 多样性表示的深度子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 407-412. | 
| [5] | 李文博, 刘波, 陶玲玲, 罗棻, 张航. L1正则化的深度谱聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3662-3667. | 
| [6] | 肖智豪, 胡志华, 朱琳. 求解冷链物流时间依赖型车辆路径问题的混合自适应大邻域搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2926-2935. | 
| [7] | 张新明, 温少晨, 刘尚旺. 差分扰动的堆优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2519-2527. | 
| [8] | 赖星锦, 郑致远, 杜晓颜, 徐莎, 杨晓君. 基于超像素锚图二重降维的高光谱聚类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2088-2093. | 
| [9] | 杨杰, 张名扬, 芮晓彬, 王志晓. 融合节点覆盖范围和结构洞的影响力最大化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1155-1161. | 
| [10] | 张琦, 郑伯川, 张征, 周欢欢. 基于随机分块的稀疏子空间聚类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1148-1154. | 
| [11] | 祝承, 赵晓琦, 赵丽萍, 焦玉宏, 朱亚飞, 陈建英, 周伟, 谭颖. 基于谱聚类半监督特征选择的功能磁共振成像数据分类[J]. 计算机应用, 2021, 41(8): 2288-2293. | 
| [12] | 韦铭燕, 陈彧, 张亮. 针对混合变量优化问题的协同进化蚁群优化算法[J]. 计算机应用, 2021, 41(5): 1412-1418. | 
| [13] | 高冉, 陈花竹. 改进的基于谱聚类的子空间聚类模型[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3645-3651. | 
| [14] | 李杏峰, 黄玉清, 任珍文. 联合低秩稀疏的多核子空间聚类算法[J]. 计算机应用, 2020, 40(6): 1648-1653. | 
| [15] | 刘静姝, 王莉, 刘惊雷. 无需特征分解的快速谱聚类算法[J]. 计算机应用, 2020, 40(12): 3413-3422. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||