《计算机应用》唯一官方网站 ›› 2026, Vol. 46 ›› Issue (1): 224-232.DOI: 10.11772/j.issn.1001-9081.2025010139
收稿日期:2025-02-13
修回日期:2025-04-07
接受日期:2025-04-08
发布日期:2026-01-10
出版日期:2026-01-10
通讯作者:
王曼婷
作者简介:郭伟(1970—),女,辽宁阜新人,副教授,硕士, CCF会员,主要研究方向:计算机视觉、智能图像处理基金资助:
Wei GUO, Manting WANG(
), Haicheng QU
Received:2025-02-13
Revised:2025-04-07
Accepted:2025-04-08
Online:2026-01-10
Published:2026-01-10
Contact:
Manting WANG
About author:GUO Wei, born in 1970, M. S., associate professor. Her research interests include computer vision, intelligent image processing.Supported by:摘要:
针对深海拍摄会导致水下图像色彩偏移、对比度过低和结构不清晰等问题,提出一种基于多尺度感知的多维空间融合水下图像增强算法,结合空间、通道和三维特征将图像信息并行传入多维特征提取网络和编码器中。首先,在多维特征提取网络中引入多尺度特征精炼模块进一步处理提取到的特征信息,使网络更准确地学习不同尺度的信息;然后,在编码器中引入多维色彩增强模块,增强图像细节和色彩;最后,设计自适应增强网络来进一步处理特征信息并融合多级信息,再通过解码器得到最终的增强图像。在公开数据集上的实验结果表明,所提算法表现优异,它的峰值信噪比(PSNR)和结构相似性(SSIM)最高分别达到24.865 1 dB和0.895 4,比混合融合方法(HFM)分别提升了1.580 6 dB和0.039 8;水下色彩质量评价(UCIQE)和水下图像质量测量(UIQM)最高分别达到0.593 1和3.102 8,比HFM分别提升了0.038 4和0.151 4。可见,所提算法能有效提升水下视觉效果。
中图分类号:
郭伟, 王曼婷, 曲海成. 基于多尺度感知的多维空间融合水下图像增强算法[J]. 计算机应用, 2026, 46(1): 224-232.
Wei GUO, Manting WANG, Haicheng QU. Underwater image enhancement algorithm based on multi-scale perception and multi-dimensional space fusion[J]. Journal of Computer Applications, 2026, 46(1): 224-232.
| 数据集 | 训练集样本数 | 测试集样本数 | 合计 |
|---|---|---|---|
| EUVP1 | 4 995 | 555 | 5 550 |
| EUVP2 | 3 330 | 370 | 3 700 |
| EUVP3 | 1 967 | 218 | 2 185 |
| UIEB | 801 | 89 | 890 |
| LSUI | 3 851 | 428 | 4 279 |
表1 数据集划分
Tab. 1 Partitioning of datasets
| 数据集 | 训练集样本数 | 测试集样本数 | 合计 |
|---|---|---|---|
| EUVP1 | 4 995 | 555 | 5 550 |
| EUVP2 | 3 330 | 370 | 3 700 |
| EUVP3 | 1 967 | 218 | 2 185 |
| UIEB | 801 | 89 | 890 |
| LSUI | 3 851 | 428 | 4 279 |
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| CLAHE[ | 18.536 3 | 0.678 4 | 19.896 1 | 0.587 8 | 19.903 5 | 0.577 4 |
| HE[ | 14.632 5 | 0.654 8 | 15.651 5 | 0.612 4 | 14.854 9 | 0.569 6 |
| IBLA[ | 16.358 1 | 0.651 7 | 16.495 4 | 0.754 1 | 14.865 3 | 0.587 4 |
| CycleGAN[ | 19.102 8 | 0.768 9 | 20.633 2 | 0.720 2 | 22.402 3 | 0.789 4 |
| AttR2U-Net[ | 20.158 7 | 0.725 0 | 21.681 3 | 0.796 4 | 21.847 9 | 0.712 6 |
| STSC[ | 21.890 1 | 0.862 2 | 22.112 3 | 0.798 1 | 23.654 4 | 0.690 3 |
| WaterNet[ | 22.546 3 | 0.881 4 | 23.032 2 | 0.715 8 | 22.153 3 | 0.788 5 |
| U-Shape[ | 22.976 2 | 0.811 2 | 23.566 3 | 0.853 1 | 23.652 3 | 0.709 1 |
| Metalantis[ | 22.831 4 | 0.843 8 | 23.198 2 | 0.849 3 | 22.351 7 | 0.767 5 |
| HFM[ | 23.441 5 | 0.855 6 | 22.889 5 | 0.799 7 | 23.284 5 | 0.801 2 |
| 本文算法 | 23.033 9 | 0.895 4 | 24.655 4 | 0.866 4 | 24.865 1 | 0.813 9 |
表2 不同算法的 PSNR 和 SSIM
Tab. 2 PSNR and SSIM of different algorithms
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| CLAHE[ | 18.536 3 | 0.678 4 | 19.896 1 | 0.587 8 | 19.903 5 | 0.577 4 |
| HE[ | 14.632 5 | 0.654 8 | 15.651 5 | 0.612 4 | 14.854 9 | 0.569 6 |
| IBLA[ | 16.358 1 | 0.651 7 | 16.495 4 | 0.754 1 | 14.865 3 | 0.587 4 |
| CycleGAN[ | 19.102 8 | 0.768 9 | 20.633 2 | 0.720 2 | 22.402 3 | 0.789 4 |
| AttR2U-Net[ | 20.158 7 | 0.725 0 | 21.681 3 | 0.796 4 | 21.847 9 | 0.712 6 |
| STSC[ | 21.890 1 | 0.862 2 | 22.112 3 | 0.798 1 | 23.654 4 | 0.690 3 |
| WaterNet[ | 22.546 3 | 0.881 4 | 23.032 2 | 0.715 8 | 22.153 3 | 0.788 5 |
| U-Shape[ | 22.976 2 | 0.811 2 | 23.566 3 | 0.853 1 | 23.652 3 | 0.709 1 |
| Metalantis[ | 22.831 4 | 0.843 8 | 23.198 2 | 0.849 3 | 22.351 7 | 0.767 5 |
| HFM[ | 23.441 5 | 0.855 6 | 22.889 5 | 0.799 7 | 23.284 5 | 0.801 2 |
| 本文算法 | 23.033 9 | 0.895 4 | 24.655 4 | 0.866 4 | 24.865 1 | 0.813 9 |
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | |
| CLAHE[ | 1.948 3 | 0.546 7 | 2.064 2 | 0.554 1 | 2.246 5 | 0.574 1 |
| HE[ | 2.036 4 | 0.511 2 | 1.956 4 | 0.541 2 | 2.345 8 | 0.535 4 |
| IBLA[ | 2.304 1 | 0.562 3 | 2.342 1 | 0.551 7 | 2.518 0 | 0.561 2 |
| CycleGAN[ | 2.742 9 | 0.556 4 | 2.982 9 | 0.523 1 | 2.839 4 | 0.603 1 |
| AttR2U-Net[ | 2.051 2 | 0.581 9 | 1.869 4 | 0.596 4 | 1.911 6 | 0.582 7 |
| STSC[ | 3.047 9 | 0.553 2 | 2.929 5 | 0.552 9 | 2.913 7 | 0.582 2 |
| WaterNet[ | 3.030 6 | 0.542 8 | 3.009 4 | 0.545 8 | 3.096 3 | 0.571 2 |
| U-Shape[ | 2.963 3 | 0.556 5 | 2.963 8 | 0.551 3 | 2.935 8 | 0.584 1 |
| Metalantis[ | 3.019 5 | 0.514 4 | 2.953 3 | 0.544 8 | 2.841 2 | 0.563 1 |
| HFM[ | 2.951 4 | 0.541 7 | 2.871 4 | 0.551 3 | 3.001 9 | 0.554 7 |
| 本文算法 | 3.102 8 | 0.580 1 | 3.015 4 | 0.563 9 | 3.056 7 | 0.593 1 |
表3 不同算法的 UIQM 和 UCIQE
Tab. 3 UIQM and UCIQE of different algorithms
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | |
| CLAHE[ | 1.948 3 | 0.546 7 | 2.064 2 | 0.554 1 | 2.246 5 | 0.574 1 |
| HE[ | 2.036 4 | 0.511 2 | 1.956 4 | 0.541 2 | 2.345 8 | 0.535 4 |
| IBLA[ | 2.304 1 | 0.562 3 | 2.342 1 | 0.551 7 | 2.518 0 | 0.561 2 |
| CycleGAN[ | 2.742 9 | 0.556 4 | 2.982 9 | 0.523 1 | 2.839 4 | 0.603 1 |
| AttR2U-Net[ | 2.051 2 | 0.581 9 | 1.869 4 | 0.596 4 | 1.911 6 | 0.582 7 |
| STSC[ | 3.047 9 | 0.553 2 | 2.929 5 | 0.552 9 | 2.913 7 | 0.582 2 |
| WaterNet[ | 3.030 6 | 0.542 8 | 3.009 4 | 0.545 8 | 3.096 3 | 0.571 2 |
| U-Shape[ | 2.963 3 | 0.556 5 | 2.963 8 | 0.551 3 | 2.935 8 | 0.584 1 |
| Metalantis[ | 3.019 5 | 0.514 4 | 2.953 3 | 0.544 8 | 2.841 2 | 0.563 1 |
| HFM[ | 2.951 4 | 0.541 7 | 2.871 4 | 0.551 3 | 3.001 9 | 0.554 7 |
| 本文算法 | 3.102 8 | 0.580 1 | 3.015 4 | 0.563 9 | 3.056 7 | 0.593 1 |
| 算法 | 模型参数量/106 | 算法运行时间/h | 浮点运算量/GFLOPs |
|---|---|---|---|
| CLAHE[ | — | 0.770 7 | 0.010 |
| HE[ | — | 0.735 0 | 0.005 |
| IBLA[ | — | 3.675 0 | 0.100 |
| AttR2U-Net[ | — | 10.634 0 | 25.000 |
| CycleGAN[ | 32.286 9 | 99.219 4 | 120.000 |
| STSC[ | 28.687 3 | 9.441 1 | 45.000 |
| WaterNet[ | 10.091 0 | 36.481 4 | 18.000 |
| U-Shape[ | 88.134 8 | 15.727 2 | 85.000 |
| 本文算法 | 86.372 1 | 6.583 5 | 40.000 |
表4 不同算法的性能指标
Tab. 4 Performance indicators of different algorithms
| 算法 | 模型参数量/106 | 算法运行时间/h | 浮点运算量/GFLOPs |
|---|---|---|---|
| CLAHE[ | — | 0.770 7 | 0.010 |
| HE[ | — | 0.735 0 | 0.005 |
| IBLA[ | — | 3.675 0 | 0.100 |
| AttR2U-Net[ | — | 10.634 0 | 25.000 |
| CycleGAN[ | 32.286 9 | 99.219 4 | 120.000 |
| STSC[ | 28.687 3 | 9.441 1 | 45.000 |
| WaterNet[ | 10.091 0 | 36.481 4 | 18.000 |
| U-Shape[ | 88.134 8 | 15.727 2 | 85.000 |
| 本文算法 | 86.372 1 | 6.583 5 | 40.000 |
| 模块 | PSNR/dB | SSIM | UIQM | UCIQE | 模型参数量/106 | 算法运行时间/h |
|---|---|---|---|---|---|---|
| U | 22.156 3 | 0.784 0 | 2.921 4 | 0.536 4 | 72.105 6 | 4.563 9 |
| U+F | 23.563 1 | 0.815 8 | 2.964 2 | 0.556 1 | 82.632 9 | 5.562 1 |
| U+M | 22.635 1 | 0.794 6 | 2.998 4 | 0.543 2 | 73.252 1 | 5.232 0 |
| U+A | 22.325 6 | 0.781 2 | 2.941 5 | 0.539 4 | 73.859 4 | 5.263 5 |
| U+F+M | 23.659 4 | 0.835 6 | 2.998 4 | 0.543 4 | 74.289 6 | 6.389 2 |
| U+F+A | 24.655 4 | 0.819 8 | 2.923 1 | 0.551 0 | 74.658 9 | 6.056 4 |
| U+F+M+A | 24.865 1 | 0.866 4 | 3.015 4 | 0.563 9 | 86.526 4 | 6.583 5 |
表5 消融实验结果
Tab. 5 Ablation experiments results
| 模块 | PSNR/dB | SSIM | UIQM | UCIQE | 模型参数量/106 | 算法运行时间/h |
|---|---|---|---|---|---|---|
| U | 22.156 3 | 0.784 0 | 2.921 4 | 0.536 4 | 72.105 6 | 4.563 9 |
| U+F | 23.563 1 | 0.815 8 | 2.964 2 | 0.556 1 | 82.632 9 | 5.562 1 |
| U+M | 22.635 1 | 0.794 6 | 2.998 4 | 0.543 2 | 73.252 1 | 5.232 0 |
| U+A | 22.325 6 | 0.781 2 | 2.941 5 | 0.539 4 | 73.859 4 | 5.263 5 |
| U+F+M | 23.659 4 | 0.835 6 | 2.998 4 | 0.543 4 | 74.289 6 | 6.389 2 |
| U+F+A | 24.655 4 | 0.819 8 | 2.923 1 | 0.551 0 | 74.658 9 | 6.056 4 |
| U+F+M+A | 24.865 1 | 0.866 4 | 3.015 4 | 0.563 9 | 86.526 4 | 6.583 5 |
| [1] | 李大海,李冰涛,王振东.基于改进YOLOv8的水下目标检测算法[J].计算机应用, 2024, 44(11): 3610-3616. |
| LI D H, LI B T, WANG Z D. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. | |
| [2] | HAN M, LYU Z, QIU T, et al. A review on intelligence dehazing and color restoration for underwater images [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(5): 1820-1832. |
| [3] | ANWAR S, LI C. Diving deeper into underwater image enhancement: a survey [J]. Signal Processing: Image Communication, 2020, 89: No.115978. |
| [4] | LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement [J]. Pattern Recognition, 2020, 98: No.107038. |
| [5] | REZA A M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for real-time image enhancement [J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35-44. |
| [6] | GONZALEZ R C, WOODS R E. Digital image processing [M]. London: Pearson, 2018. |
| [7] | PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption [J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579-1594. |
| [8] | CARLEVARIS-BIANCO N, MOHAN A, EUSTICE R M. Initial results in underwater single image dehazing [C]// Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE. Piscataway: IEEE, 2010: 1-8. |
| [9] | HUANG D, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition [C]// Proceedings of the 2018 International Conference on Multimedia Modeling, LNCS 10704. Cham: Springer, 2018: 453-465. |
| [10] | 李慧,贾炳志,王晨曦,等.基于Swin Transformer的生成对抗网络水下图像增强模型[J].计算机应用, 2025, 45(5): 1439-1446. |
| LI H, JIA B Z, WANG C X, et al. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. | |
| [11] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. |
| [12] | WANG D, MA L, LIU R, et al. Semantic-aware texture-structure feature collaboration for underwater image enhancement [C]// Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 4592-4598. |
| [13] | LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond [J]. IEEE Transactions on Image Processing, 2020, 29: 4376-4389. |
| [14] | PENG L, ZHU C, BIAN L. U-shape Transformer for underwater image enhancement [J]. IEEE Transactions on Image Processing, 2023, 32: 3066-3079. |
| [15] | ZHANG Y, CHANDLER D M, LESZCZUK M. Retinex-based underwater image enhancement via adaptive color correction and hierarchical U-shape Transformer [J]. Optics Express, 2024, 32(14): 24018-24040. |
| [16] | WANG H, ZHANG W, BAI L, et al. Metalantis: a comprehensive underwater image enhancement framework [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5618319. |
| [17] | AN S, XU L, DENG Z, et al. HFM: a hybrid fusion method for underwater image enhancement [J]. Engineering Applications of Artificial Intelligence, 2024, 127(Pt A): No.107219. |
| [18] | DING X, ZHANG X, MA N, et al. RepVGG: Making VGG-style ConvNets great again [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737. |
| [19] | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. |
| [20] | WEBB B S, DHRUV N T, SOLOMON S G, et al. Early and late mechanisms of surround suppression in striate cortex of macaque [J]. Journal of Neuroscience, 2005, 25(50): 11666-11675. |
| [21] | LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599-2613. |
| [22] | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
| [23] | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
| [24] | ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception [J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. |
| [25] | ZHANG L, ER M J, WANG Z, et al. Underwater image enhancement based on AttR2U-Net and multi-residual networks [C]// Proceedings of the 5th International Conference on Intelligent Autonomous Systems. Piscataway: IEEE, 2022: 90-95. |
| [26] | KORHONEN J, YOU J. Peak signal-to-noise ratio revisited: is simple beautiful? [C]// Proceedings of the 4th International Workshop on Quality of Multimedia Experience. Piscataway: IEEE, 2012: 37-38. |
| [27] | WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment [C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers — Volume 2. Piscataway: IEEE, 2003: 1398-1402. |
| [28] | PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures [J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 541-551. |
| [29] | YANG M, SOWMYA A. An underwater color image quality evaluation metric [J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. |
| [1] | 张秀艳, 刘文涛, 王新. 基于快速存取记录器数据的飞行俯仰操作特征提取方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 322-330. |
| [2] | 麦超云, 张洪燚, 秦传波, 曾军英, 王栋. 基于多尺度与空间频率特征的嗜铬细胞瘤图像分割网络[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 280-288. |
| [3] | 梁一鸣, 范菁, 柴汶泽. 基于双向交叉注意力的多尺度特征融合情感分类[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2773-2782. |
| [4] | 王闯, 俞璐, 陈健威, 潘成, 杜文博. 开集域适应综述[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2727-2736. |
| [5] | 谢劲, 褚苏荣, 强彦, 赵涓涓, 张华, 高勇. 用于胸片中硬负样本识别的双支分布一致性对比学习模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2369-2377. |
| [6] | 陈亮, 王璇, 雷坤. 复杂场景下跨层多尺度特征融合的安全帽佩戴检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2333-2341. |
| [7] | 王向, 崔倩倩, 张晓明, 王建超, 王震洲, 宋佳霖. 改进ConvNeXt的无线胶囊内镜图像分类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 2016-2024. |
| [8] | 郭诗月, 党建武, 王阳萍, 雍玖. 结合注意力机制和多尺度特征融合的三维手部姿态估计[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1293-1299. |
| [9] | 陈庆礼, 郭渊博, 方晨. 面向数据异构的聚类联邦学习算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1086-1094. |
| [10] | 王瑜, 方贤进, 杨高明, 丁一峰, 杨新露. 基于注意力掩码与特征提取的人脸伪造主动防御[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 904-910. |
| [11] | 何秋润, 胡节, 彭博, 李天源. 基于上下文信息的多尺度特征融合织物疵点检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 640-646. |
| [12] | 张天骐, 谭霜, 沈夕文, 唐娟. 融合注意力机制和多尺度特征的图像水印方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 616-623. |
| [13] | 张众维, 王俊, 刘树东, 王志恒. 多尺度特征融合与加权框融合的遥感图像目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 633-639. |
| [14] | 黄靖, 彭鑫, 李文豪, 胡凯, 王腾, 黄亚敏, 文元桥. 多尺度特征融合的高质量声呐图像生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3987-3994. |
| [15] | 王晓曼, 陈艳平, 杨采薇, 黄瑞章, 秦永彬. 多方向梯度特征提取的嵌套命名实体识别方法[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3547-3554. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||