| [1] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. [2024-11-27]..
|
| [2] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680.
|
| [3] |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 6840-6851.
|
| [4] |
SONG J, MENG C, ERMON S. Denoising diffusion implicit models[EB/OL]. [2024-03-02]..
|
| [5] |
刘彪. 基于声呐图像处理的水下目标探测关键技术研究[D]. 大理:大理大学, 2024: 16-17.
|
|
LIU B. Research on key technology of underwater target detection based on sonar image processing [D]. Dali: Dali University, 2024: 16-17.
|
| [6] |
魏光春,邢传玺,崔晶,等. 利用同步码字优化和正则化相结合的声呐图像降噪方法[J]. 云南民族大学学报(自然科学版), 2024, 33(2): 225-231.
|
|
WEI G C, XING C X, CUI J, et al. A sonar image noise reduction method that combines simultaneous codeword optimization and regulation[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2024, 33(2): 225-231.
|
| [7] |
冯伟,刘光宇,刘彪,等. 基于自适应维纳滤波和2D-VMD的声呐图像去噪算法[J]. 南京信息工程大学学报, 2024, 16(1): 97-105.
|
|
FENG W, LIU G Y, LIU B, et al. Sonar image denoising algorithm based on adaptive Wiener filtering and 2D-VMD[J] Journal of Nanjing University of Information Science and Technology, 2024, 16(1): 97-105.
|
| [8] |
王成杰. 基于各向异性引导滤波与双边滤波的前视声呐图像去噪[D]. 大连:大连海事大学, 2023: 34-38.
|
|
WANG C J. Research on image denoising algorithm of forward-looking sonar based on anisotropic guided filter and bilateral filter[D]. Dalian: Dalian Maritime University, 2023: 34-38.
|
| [9] |
郭爱彬. 基于生成对抗网络的声呐图像生成方法研究[D]. 大连:大连海事大学, 2023: 23-27.
|
|
GUO A B. Research on sonar image generation method based on generative adversarial network[D]. Dalian: Dalian Maritime University, 2023: 23-27.
|
| [10] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114.
|
| [11] |
刘秋逸. 基于生成对抗网络的声呐图像生成及盲去噪方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020: 44-46.
|
|
LIU Q Y. Generative adversarial networks based sonar image synthesis and blind denoising methods[D]. Harbin: Harbin Engineering University, 2020: 44-46.
|
| [12] |
LEE S, PARK B, KIM A. Deep learning from shallow dives: sonar image generation and training for underwater object detection[EB/OL]. [2024-02-27]..
|
| [13] |
李响. 侧扫声纳图像目标样本生成和分类方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020: 44-45.
|
|
LI X. Research on target sample generation and classification of side scan sonar image[D]. Harbin: Harbin Engineering University, 2020: 44-45.
|
| [14] |
马麒翔. 基于深度学习的声呐图像目标检测算法研究[D]. 南京:东南大学, 2020: 59-60.
|
|
MA Q X. Research on object detection algorithm of sonar image based on deep learning[D]. Nanjing: Southeast University, 2020: 59-60.
|
| [15] |
于淼. 基于深度学习的侧扫声呐图像目标检测方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020: 9-11.
|
|
YU M. Research on target detection method of side-scan sonar images based on deep learning[D]. Harbin: Harbin Engineering University, 2020: 9-11.
|
| [16] |
梁雪灿. 基于生成对抗网络的声学图像超分辨率研究[D]. 哈尔滨:哈尔滨工程大学, 2019: 51-53.
|
|
LIANG X C. Research on acoustic image super-resolution based on generative adversarial network[D]. Harbin: Harbin Engineering University, 2019: 51-53.
|
| [17] |
李宝奇,黄海宁,刘纪元,等. 基于改进CycleGAN的光学图像迁移生成水下小目标合成孔径声纳图像算法研究[J]. 电子学报, 2021, 49(9): 1746-1753.
|
|
LI B Q, HUANG H N, LIU J Y, et al. Optical image-to-underwater small target synthetic aperture sonar image translation algorithm based on improved CycleGAN[J]. Acta Electronica Sinica, 2021, 49(9): 1746-1753.
|
| [18] |
WANG Z, GUO Q, LEI M, et al. High-quality sonar image generation algorithm based on generative adversarial networks[C]// Proceedings of the 40th Chinese Control Conference. Piscataway: IEEE, 2021: 3099-3104.
|
| [19] |
程文博. 基于生成对抗网络的声呐图像超分辨率算法[J]. 数字海洋与水下攻防, 2023, 6(3): 353-358.
|
|
CHENG W B. Sonar image super-resolution algorithm based on generative adversarial network[J]. Digital Ocean and Underwater Warfare, 2023, 6(3): 353-358.
|
| [20] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
| [21] |
GURROLA-RAMOS J, DALMAU O, ALARCÓN T E. A residual dense U-Net neural network for image denoising[J]. IEEE Access, 2021, 9: 31742-31754.
|
| [22] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
|
| [23] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
|
| [24] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456.
|
| [25] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826.
|
| [26] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4278-4284.
|
| [27] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
| [28] |
MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks [EB/OL]. [2024-05-24]..
|
| [29] |
YOSHIDA Y, MIYATO T. Spectral norm regularization for improving the generalizability of deep learning [EB/OL]. [2024-05-28]..
|
| [30] |
CARLSON R E, FRITSCH F N. An algorithm for monotone piecewise bicubic interpolation[J]. SIAM Journal on Numerical Analysis, 1989, 26(1): 230-238.
|
| [31] |
DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
|
| [32] |
WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]// Proceedings of the 2018 European Conference on Computer Vision Workshops, LNCS 11133. Cham: Springer, 2019: 63-79.
|