《计算机应用》唯一官方网站

• •    下一篇

多尺度特征融合的高质量声呐图像生成方法

黄靖,彭鑫,李文豪,胡凯,王腾,黄亚敏,文元桥   

  1. 武汉理工大学
  • 收稿日期:2024-12-10 修回日期:2025-03-14 发布日期:2025-04-08 出版日期:2025-04-08
  • 通讯作者: 黄靖
  • 基金资助:
    国家自然科学基金;新一代人工智能技术应用交通运输行业研发中心开放基金;浙江省交通厅科技项目

High quality sonar image generation method based on multi-scale feature fusion

  • Received:2024-12-10 Revised:2025-03-14 Online:2025-04-08 Published:2025-04-08

摘要: 由于声呐图像成像原理本身的特点以及复杂的水下环境的干扰,水下声呐图像普遍存在分辨率不足和目标细节缺失的问题。针对该问题,提出了一种多尺度特征融合的高质量声纳图像生成方法。首先,通过残差密集连接模块浅层提取图像特征,捕捉基本纹理与轮廓信息,建立图像的空间布局;其次,设计了多尺度注意力特征提取模块(MSA),在经过该模块后能够能够自适应地聚焦于不同尺度下的关键特征,并且通过注意力机制进一步增强关键特征表达的同时抑制冗余信息表达;最后以基于谱归一化的逐像素判别策略构建判别器网络,提升了复杂物体边缘和细节的重建能力。在水下声呐图像数据集上的实验表明,所提方法相比于现有代表方法ESRGAN在峰值信噪比(PSNR)和结构相似性(SSIM)指标上取得了6.7%、5.4%相对提升。上述实验结果表明,所提方法在水下声呐图像数据集上有效提升了生成效果。

关键词: 深度学习, 高质量图像生成, 生成对抗网络, 声呐图像处理, 特征融合

Abstract: Due to the inherent characteristics of sonar imaging principles and the interference of complex underwater environments, underwater sonar images generally suffer from insufficient resolution and missing target details. To address this issue,a high-quality sonar image generation method based on multi-scale feature fusion was proposed . Firstly, the residual dense connection module was used to extract image features at a shallow level, capturing basic texture and contour information, and established the spatial layout of the image; Secondly, a Multi-Scale Attention feature extraction module (MSA) was designed, which can adaptively focus on key features at different scales and further enhance the expression of key features while suppressing redundant information expression through attention mechanisms; Finally, a discriminator network was designed using a pixel by pixel discrimination strategy based on spectral normalization, which improved the reconstruction ability of complex object edges and details. Experiments on underwater sonar image datasets show that the proposed method achieves relative improvements of 6.7% and 5.4% in Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) metrics compared to the existing representative method ESRGAN(Enhanced Super-Resolution Generative Adversarial Networks). The above experimental results indicate that the proposed method effectively improves the generation performance on underwater sonar image datasets.

Key words: deep learning, high-quality image generation, generative adversarial networks, sonar image processing, feature fusion

中图分类号: