| 1 | 周文柏,张卫明,俞能海,等. 人脸视频深度伪造与防御技术综述[J]. 信号处理, 2021, 37(12): 2338-2355. | 
																													
																						|  | ZHOU W B, ZHANG W M, YU N H, et al. An overview of Deepfake forgery and defense techniques [J]. Journal of Signal Processing, 2021, 37(12):2338-2355. | 
																													
																						| 2 | 蔺琛皓,沈超,邓静怡,等. 虚假数字人脸内容生成与检测技术[J]. 计算机学报, 2023, 46(3): 469-498. | 
																													
																						|  | LIN C H, SHEN C, DENG J Y, et al. Digitally forged face content creation and detection [J]. Chinese Journal of Computers, 2023, 46(3): 469-498. | 
																													
																						| 3 | JUNG T, KIM S, KIM K. DeepVision: Deepfakes detection using human eye blinking pattern [J]. IEEE Access, 2020, 8: 83144-83154. | 
																													
																						| 4 | MIRSKY Y, LEE W. The creation and detection of deepfakes: a survey [J]. ACM Computing Surveys, 2022, 54(1): No.7. | 
																													
																						| 5 | FU X, LI S, YUAN Y, et al. Forgery face detection via adaptive learning from multiple experts [J]. Neurocomputing, 2023, 527: 110-118. | 
																													
																						| 6 | PUMAROLA A, AGUDO A, MARTINEZ A M, et al. GANimation: anatomically-aware facial animation from a single image [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 835-851. | 
																													
																						| 7 | CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask Transformer for universal image segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1280-1289. | 
																													
																						| 8 | NIE X, DUAN M, DING H, et al. Attention Mask R-CNN for ship detection and segmentation from remote sensing images [J]. IEEE Access, 2020, 8: 9325-9334. | 
																													
																						| 9 | DOSOVITSKIY A, BROX T. Generating images with perceptual similarity metrics based on deep networks [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 658-666. | 
																													
																						| 10 | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2414-2423. | 
																													
																						| 11 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. | 
																													
																						| 12 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. | 
																													
																						| 13 | LIU S, DENG W. Very deep convolutional neural network based image classification using small training sample size [C]// Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE, 2015: 730-734. | 
																													
																						| 14 | LUAN F, PARIS S, SHECHTMAN E, et al. Deep photo style transfer [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6997-7005. | 
																													
																						| 15 | SITAULA C, HOSSAIN M B. Attention-based VGG16 model for COVID-19 chest X-ray image classification [J]. Applied Intelligence, 2021, 51: 2850-2863. | 
																													
																						| 16 | TAMMINA S. Transfer learning using VGG16 with deep convolutional neural network for classifying images [J]. International Journal of Scientific and Research Publications, 2019, 9(10): 143-150. | 
																													
																						| 17 | FANG Z, YANG Y, LIN J, et al. Adversarial attacks for multi target image translation networks [C]// Proceedings of the 2020 IEEE International Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2020: 179-184. | 
																													
																						| 18 | HUANG H, WANG Y, CHEN Z, et al. CMUA-Watermark: a cross-model universal adversarial watermark for combating deepfakes [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 989-997. | 
																													
																						| 19 | QIU H, DU Y, LU T. The framework of cross-domain and model adversarial attack against deepfake [J]. Future Internet, 2022, 14(2): No.46. | 
																													
																						| 20 | RUIZ N, BARGAL S A, SCLAROFF S. Disrupting deepfakes: adversarial attacks against conditional image translation networks and facial manipulation systems [C]// Proceedings of the 2020 European Conference on Computer Vision Workshops, LNCS 12538. Cham: Springer, 2020: 236-251. | 
																													
																						| 21 | WANG X, HUANG J, MA S, et al. DeepFake Disrupter: the detector of deepfake is my friend [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14900-14909. | 
																													
																						| 22 | YEH C Y, CHEN H W, TSAI S L, et al. Disrupting image-translation-based DeepFake algorithms with adversarial attacks[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision Workshops. Piscataway: IEEE, 2020: 53-62. | 
																													
																						| 23 | CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8789-8797. | 
																													
																						| 24 | HUANG Q, ZHANG J, ZHOU W, et al. Initiative defense against facial manipulation [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 1619-1627. | 
																													
																						| 25 | SHAHRIYAR S A, WRIGHT M. Evaluating robustness of sequence-based deepfake detector models by adversarial perturbation [C]// Proceedings of the 1st Workshop on Security Implications of Deepfakes and Cheapfakes. New York: ACM, 2022: 13-18. | 
																													
																						| 26 | ZHU Y, CHEN Y, LI X, et al. Information-containing adversarial perturbation for combating facial manipulation systems [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2046-2059. |