期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于轻量密集神经网络的医学图像超分辨率重建算法
王一宁, 赵青杉, 秦品乐, 胡玉兰, 宗春梅
《计算机应用》唯一官方网站    2022, 42 (8): 2586-2592.   DOI: 10.11772/j.issn.1001-9081.2021061093
摘要524)   HTML21)    PDF (1357KB)(263)    收藏

医学图像的清晰与否直接影响临床诊断。由于成像设备与环境因素的限制,往往不能直接获得高分辨率的图像,且大多数智能终端的硬件并不适合运行大规模深度神经网络模型,因此提出一种拥有较少的层和参数的轻量密集神经网络模型。首先,网络中使用密集块和跳层结构进行全局和局部图像特征学习,并将更多特征信息传入激活函数,从而使网络中浅层低级的图像特征更容易传播到高层,由此提高医学图像超分辨率重建的质量;然后,采用分阶段方法训练网络,并以双任务损失加强网络学习中的监督指导,从而解决高倍图像超分辨率重建导致的网络训练难度增加的问题。实验结果表明,与最近邻(NN)插值、双线性插值、双立方插值、基于卷积神经网络(CNN)的算法以及基于残差神经网络的算法相比,所提模型能更好地重建出医学图像的纹理细节,获得更高的峰值信噪比(PSNR)和结构相似性(SSIM),在训练速度和硬件消耗方面均取得了良好的效果,具有较高的实用价值。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于残差注意力机制的点云配准算法
秦庭威, 赵鹏程, 秦品乐, 曾建朝, 柴锐, 黄永琦
《计算机应用》唯一官方网站    2022, 42 (7): 2184-2191.   DOI: 10.11772/j.issn.1001-9081.2021071319
摘要587)   HTML15)    PDF (2278KB)(557)    收藏

针对传统点云配准算法精度低、鲁棒性差以及放疗前后癌症患者无法实现精确放疗的问题,提出一种基于残差注意力机制的点云配准算法(ADGCNNLK)。首先,在动态图深度卷积网络(DGCNN)中添加残差注意力机制来有效地利用点云的空间信息,并减少信息损失;然后,利用添加残差注意力机制的DGCNN提取点云特征,这样做不仅可以在保持点云置换不变性的同时捕捉点云的局部几何特征,也可以在语义上将信息聚合起来,从而提高配准效率;最后,将提取到的特征点映射到高维空间中并使用经典的图像迭代配准算法LK进行配准。实验结果表明,所提算法与迭代最近点算法(ICP)、全局优化的ICP算法(Go-ICP)和PointNetLK相比,在无噪、有噪的情况下配准效果均最好。其中,在无噪情况下,与PointNetLK相比,所提算法的旋转均方误差降低了74.61%,平移均方误差降低了47.50%;在有噪声的情况下,与PointNetLK相比,所提算法的旋转均方误差降低了73.13%,平移均方误差降低了44.18%,说明所提算法与PointNetLK相比鲁棒性更强。将所提算法应用于放疗前后癌症患者人体点云模型的配准,从而辅助医生治疗,并实现了精确放疗。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 基于多感受野的生成对抗网络医学MRI影像超分辨率重建
刘朋伟, 高媛, 秦品乐, 殷喆, 王丽芳
《计算机应用》唯一官方网站    2022, 42 (3): 938-945.   DOI: 10.11772/j.issn.1001-9081.2021040629
摘要392)   HTML29)    PDF (1135KB)(185)    收藏

针对医学磁共振成像(MRI)过程中由于噪声、成像技术和成像原理等干扰因素引起的图像细节丢失、纹理不清晰等问题,提出了基于多感受野的生成对抗网络医学MRI影像超分辨率重建算法。首先,利用多感受野特征提取块获取不同感受野下图像的全局特征信息,为避免感受野过小或过大导致图像的细节纹理丢失,将每组特征分为两组,其中一组用于反馈不同尺度感受野下的全局特征信息,另一组用于丰富下一组特征的局部细节纹理信息;然后,使用多感受野特征提取块构建特征融合组,并在每个特征融合组中添加空间注意力模块,充分获取图像的空间特征信息,减少了浅层和局部特征在网络中的丢失,在图像的细节上取得了更逼真的还原度;其次,将低分辨率图像的梯度图转化为高分辨率图像的梯度图辅助重建超分辨率图像;最终将恢复后的梯度图集成到超分辨率分支中,为超分辨率重建提供结构先验信息,有助于生成高质量的超分辨率图像。实验结果表明,相比基于梯度引导的结构保留超分辨率算法(SPSR),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)分别提升了4.8%、2.7%、3.5%,重建出的医学MRI影像纹理细节更加丰富、视觉效果更加逼真。

图表 | 参考文献 | 相关文章 | 多维度评价
4. 基于超分辨率网络的CT三维重建算法
李俊伯, 秦品乐, 曾建潮, 李萌
《计算机应用》唯一官方网站    2022, 42 (2): 584-591.   DOI: 10.11772/j.issn.1001-9081.2021020219
摘要604)   HTML27)    PDF (1088KB)(562)    收藏

计算机断层扫描(CT)三维重建技术通过上采样体数据来提高三维模型质量,减轻模型中的锯齿状边缘、条纹状伪影和不连续表面等现象,从而提高临床医学中疾病诊断的准确率。针对以往CT三维重建后模型仍然不够清晰的问题,提出一种基于超分辨率网络的CT三维重建算法。网络模型为具有双重损失的优化学习纵轴超分辨率重建网络(DLRNet),通过单轴超分辨率进行腹部CT三维重建。网络末端引入优化学习模块,且除计算基准图与超分辨率图像的损失外,还计算网络内部粗略重建图像与基准图的损失,这样一来,优化学习与双重损失能使网络产生更接近于基准图的结果。随后在特征提取模块引入空间特征金字塔池化和通道注意力机制,加权细化学习了不同粗细以及规模不一的血管组织的特征。最后使用动态生成卷积核组的方法进行上采样使得单一网络模型可应对不同缩放因子的上采样任务。实验结果表明,相较于通道注意力的方法RCAN(Residual Channel Attention Network),所提网络模型在2、3、4倍缩放因子下的峰值信噪比(PSNR)平均提高0.789 dB。可见所提网络模型有效提升了CT三维模型的质量,一定程度上恢复了血管组织的连续细节特征,同时具备了实用性。

图表 | 参考文献 | 相关文章 | 多维度评价
5. 基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络
胡屹杉, 秦品乐, 曾建潮, 柴锐, 王丽芳
计算机应用    2021, 41 (3): 891-897.   DOI: 10.11772/j.issn.1001-9081.2020060783
摘要499)      PDF (1326KB)(1584)    收藏
针对甲状腺超声影像中甲状腺组织大小和形态的多样性以及周边组织的复杂性,提出了一种基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络。首先,利用不同膨胀率的空洞卷积和动态滤波器来融合不同感受野下的全局语义特征与不同范围的上下文详情的语义特征,从而提升网络对多尺度目标的适应性与准确度;然后,在特征降维时采用混合上采样方式,以增强高维语义特征的空间信息和低维空间特征的上下文信息;最后,采用空间注意力机制来优化图像的低维特征,并采用高低维特征融合的方式使高低维特征信息在保留重要特征的同时摒弃冗余信息以及使网络对于图像前背景的区分能力得到增强。实验结果表明,所提方法在甲状腺超声影像公开数据集上达到了0.963±0.026的准确率、0.84±0.03的召回率和0.79±0.03的dice系数。可见所提方法能较好地解决组织形态差异性大以及周边组织复杂的问题。
参考文献 | 相关文章 | 多维度评价
6. 基于面部特征图对称的人脸正面化生成对抗网络算法
李虹霞, 秦品乐, 闫寒梅, 曾建潮, 鲍骞月, 柴锐
计算机应用    2021, 41 (3): 714-720.   DOI: 10.11772/j.issn.1001-9081.2020060779
摘要713)      PDF (1432KB)(824)    收藏
目前人脸正面化研究主要解决人脸偏转问题,而对监控视频等现实场景中同时受偏转和俯仰变化影响的侧脸的正面化生成关注较少,针对这个问题和多角度侧脸生成的正面人脸图存在身份信息保留不全的问题,提出了一种基于特征图对称模块和眼周特征保留损失的生成对抗网络(GAN)。首先,根据人脸对称性先验,提出特征图对称模块,先使用人脸关键点检测器检测出侧脸鼻尖点位置,再将编码器提取到的特征图依照鼻尖位置进行镜像对称,从而在特征层面上缓解面部信息缺失的问题。其次,借鉴眼周识别思想,在现有的生成图身份保留方法中加入了眼周特征保留损失以训练生成器生成逼真的且保留身份信息的人脸正面图像。实验结果表明,所提算法得到的生成图面部细节保留较好,且在CAS-PEAL-R1数据集的所有俯角下人脸的平均Rank-1识别率为99.03%,可见该算法能够有效解决多角度侧脸的正面化问题。
参考文献 | 相关文章 | 多维度评价
7. 基于注意力机制的两阶段纵膈淋巴结自动分割算法
徐少伟, 秦品乐, 曾建朝, 赵致楷, 高媛
计算机应用    2021, 41 (2): 556-562.   DOI: 10.11772/j.issn.1001-9081.2020060809
摘要454)      PDF (2390KB)(545)    收藏
判断淋巴结分区是否存在淋巴结转移以及准确分割恶性淋巴结对于肺癌诊断以及治疗意义重大。针对纵膈淋巴结尺寸差异大、正负样本不平衡、与周边软组织和肺肿瘤特征相似等问题,提出了一个新颖的用于纵膈淋巴结分割的基于注意力机制的级联算法。首先,根据医学先验设计了两阶段分割算法剔除纵膈干扰组织后对疑似淋巴结进行分割,减少负样本的影响和训练难度,同时增强对纵膈淋巴结的分割能力;然后,引入全局聚合模块和双注意力模块以提升网络对多尺度目标和背景的分类能力。实验结果表明,提出的算法在纵膈淋巴结数据集上的准确率达到0.707 9,召回率达到0.726 9,Dice score达到 0.701 1,在准确率和Dice score上均明显优于当前其他纵膈淋巴结分割算法,能较好地解决淋巴结尺寸差异大、样本不平衡、特征易混淆等问题。
参考文献 | 相关文章 | 多维度评价
8. 基于磁共振影像层间插值的超分辨率及多视角融合
李萌, 秦品乐, 曾建潮, 李俊伯
《计算机应用》唯一官方网站    2021, 41 (11): 3362-3367.   DOI: 10.11772/j.issn.1001-9081.2020122065
摘要379)   HTML7)    PDF (650KB)(222)    收藏

针对磁共振(MR)图像切片内分辨率高而切片间分辨率低,导致MR在冠状面和矢状面上缺乏医学诊断意义的问题,提出了一种基于层间插值及多视角融合网络的医学图像处理算法。首先,引入了层间插值模块,用来将MR体数据沿冠状和矢状方向从三维数据切割成二维图像;然后,在分别对冠状面和矢状面进行特征提取之后,通过空间矩阵滤波器动态计算权重用于任意大小的上采样因子放大图像;最后,将冠状图和矢状图在层间插值模块中得到的结果聚合成三维数据后再次沿轴状方向切割成二维图像,对得到的二维图像两两进行融合并通过轴状方向数据进行修正。实验结果表明,所提算法相较于其他超分辨率算法在×2、×3、×4尺度下的峰值信噪比(PSNR)均有1 dB左右的提升,可见所提算法有效提升了图像的重建质量。

图表 | 参考文献 | 相关文章 | 多维度评价
9. 基于改进粒子群优化算法的牙齿正畸路径规划方法
徐晓强, 秦品乐, 曾建朝
计算机应用    2020, 40 (7): 1938-1943.   DOI: 10.11772/j.issn.1001-9081.2019112055
摘要447)      PDF (1792KB)(653)    收藏
针对虚拟口腔正畸治疗系统中牙齿移动路径规划问题,提出了一种基于正态分布的简化均值粒子群的牙齿正畸路径规划方法。首先建立了单颗牙齿及整体牙齿的数学模型,并根据牙齿运动的特性,将牙齿正畸路径规划问题转化为带约束的优化问题;其次,在简化粒子群算法的基础上,引入正态分布及均值粒子群的思想,提出了一种基于正态分布的简化均值粒子群优化(NSMPSO)算法;最后,从平移路径长度、旋转角度、碰撞检测以及牙齿在单阶段的移动量、旋转量这五个方面构造了高安全性的适应度函数,实现了牙齿正畸移动路径的规划。将NSMPSO与基本粒子群优化(PSO)算法、均值粒子群优化(MPSO)算法和动态调整惯性权重的简化均值粒子群优化(DSMPSO)算法进行对比,结果表明,改进的算法在Sphere、Griewank和Ackley这三大基准测试函数上均在50次迭代内趋于稳定收敛,且均具有最快的收敛速度和最高的收敛精度。通过Matlab中的仿真实验,验证了利用该数学模型和改进算法求得的最优路径安全可靠,可以为医生提供辅助诊断。
参考文献 | 相关文章 | 多维度评价
10. 基于并行通道-空间注意力机制的腹部MRI影像多尺度超分辨率重建
樊帆, 高媛, 秦品乐, 王丽芳
计算机应用    2020, 40 (12): 3624-3630.   DOI: 10.11772/j.issn.1001-9081.2020050670
摘要390)      PDF (1111KB)(534)    收藏
为了有效解决腹部磁共振成像(MRI)影像在超分辨率重建过程中因高频细节丢失引起的边界不明显、腹部器官显示不清晰以及单模型单尺度重建应用不方便等问题,提出了一种基于并行通道-空间注意力机制的多尺度超分辨率重建算法。首先,构造了并行通道-空间注意力残差块,通过空间注意力模块获取图像重点区域与高频信息的相关性,通过通道注意力模块获取图像各通道对关键信息响应程度的权重,同时拓宽网络的特征提取层以增加流入注意力模块的特征信息;此外,添加了权重归一化层,保证了网络的训练效率;最后,在网络末端应用多尺度上采样层,增加了网络的灵活性和可用性。实验结果表明,相较深层残差通道注意力超分辨率网络(RCAN),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)平均提高了0.68 dB。所提算法有效提升了图像的重建质量。
参考文献 | 相关文章 | 多维度评价
11. 基于多特征融合与分层数据关联的空中红外多目标跟踪方法
杨博, 蔺素珍, 禄晓飞, 李大威, 秦品乐, 左健宏
计算机应用    2020, 40 (10): 3075-3080.   DOI: 10.11772/j.issn.1001-9081.2020030320
摘要379)      PDF (1977KB)(496)    收藏
针对星空背景下目标相似度高、数量大和误检数目较多所导致的空中红外多目标跟踪困难问题,提出基于分层数据关联的空中红外多目标在线跟踪方法。首先,根据红外场景特性来提取目标的位置特征、灰度特征和尺度特征;其次,综合这三个特征来计算目标与轨迹之间的初步关联关系以获得真实目标;再次,将所获得的真实目标按照尺度大小分类,大尺度类目标数据关联采用表观特征、运动特征、尺度特征三种特征相加的方法来计算,小尺度类目标数据关联采用表观特征与运动特征两种特征相乘的方法来计算;最后,根据匈牙利算法对两类目标分别进行目标分配、完成轨迹更新。多种复杂情况下的实验结果表明:与仅采用运动特征的在线跟踪方法相比,所提方法的跟踪准确率提升了12.6%;与采用多特征融合的方法相比,所提方法的分层数据关联不仅提高了跟踪速度,也使跟踪准确率提升了19.6%。综上,该方法不仅跟踪精度高,而且具有较好的实时性和抗干扰能力。
参考文献 | 相关文章 | 多维度评价
12. 基于不同超声成像的甲状腺结节良恶性判别
武宽, 秦品乐, 柴锐, 曾建朝
计算机应用    2020, 40 (1): 77-82.   DOI: 10.11772/j.issn.1001-9081.2019061113
摘要557)      PDF (981KB)(528)    收藏
为实现更为准确的甲状腺结节良恶性超声图像诊断,避免不必要的穿刺或活检手术,提出了一种基于卷积神经网络(CNN)的常规超声成像和超声弹性成像的特征结合方法,提高了甲状腺结节良恶性分类准确率。首先,卷积网络模型在大规模自然图像数据集上完成预训练,并通过迁移学习的方式将特征参数迁移到超声图像域用以生成深度特征并处理小样本。然后,结合常规超声成像和超声弹性成像的深度特征图形成混合特征空间。最后,在混合特征空间上完成分类任务,实现了一个端到端的卷积网络模型。在1156幅图像上进行实验,所提方法的准确率为0.924,高于其他单一数据源的方法。实验结果表明,浅层卷积共享图像的边缘纹理特征,高层卷积的抽象特征与具体的分类任务相关,使用迁移学习的方法可以解决数据样本不足的问题;同时,弹性超声影像可以对甲状腺结节的病灶硬度进行客观的量化,结合常规超声的纹理轮廓特征,二者融合的混合特征可以更全面地描述不同病灶之间的差异。所提方法可以高效准确地对甲状腺结节进行良恶性分类,减轻患者痛苦,给医生提供更为准确的辅助诊断信息。
参考文献 | 相关文章 | 多维度评价
13. 基于深度可分离卷积和宽残差网络的医学影像超分辨率重建
高媛, 王晓晨, 秦品乐, 王丽芳
计算机应用    2019, 39 (9): 2731-2737.   DOI: 10.11772/j.issn.1001-9081.2019030413
摘要478)      PDF (1073KB)(457)    收藏

为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更容易地传播到高层,提高了医学影像超分辨率的重建质量;然后,采用组归一化的方法训练网络,将卷积层的通道维度划分为组,在每个组内计算归一化的均值和方差,使得网络训练过程更快地收敛,解决了深度可分离卷积扩宽通道数导致网络训练难度增加的问题,同时网络表现出更好的性能。实验结果表明,对比传统的最近邻插值、双三次插值超分辨率算法,以及基于稀疏表达的超分辨率算法,所提算法重建出的医学影像纹理细节更加丰富、视觉效果更加逼真。对比基于卷积神经网络的超分辨率算法,基于宽残差超分辨率神经网络算法和生成对抗网络超分辨率算法,所提算法在峰值信噪比(PSNR)和结构相似性(SSIM)上有显著的提升。

参考文献 | 相关文章 | 多维度评价
14. 基于密集神经网络的灰度图像着色算法
张娜, 秦品乐, 曾建潮, 李启
计算机应用    2019, 39 (6): 1816-1823.   DOI: 10.11772/j.issn.1001-9081.2018102100
摘要474)      PDF (1365KB)(351)    收藏
针对在灰度图像着色领域中,传统算法信息提取率不高、着色效果不理想的问题,提出了基于密集神经网络的灰度图像着色算法,以实现改善着色效果,让人眼更好地观察图片信息的目的。利用密集神经网络的信息提取高效性,构建并训练了一个端到端的深度学习模型,对图像中的各类信息及特征进行提取。训练网络时与原图像进行对比,以逐渐减小网络输出结果的信息、分类等各类型的损失。训练完成后,只需向网络输入一张灰度图片,即可生成一张颜色饱满、鲜明逼真的彩色图片。实验结果表明,引入密集网络后,可有效改善着色过程中的漏色、细节信息损失、对比度低等问题,所提算法着色效果较基于VGG网络及U-Net、双流网络结构、残差网络(ResNet)等性能优异的先进着色算法而言取得了显著的改进。
参考文献 | 相关文章 | 多维度评价
15. 基于改进的Zernike矩的局部描述符与图割离散优化的非刚性多模态脑部图像配准
王丽芳, 王雁丽, 蔺素珍, 秦品乐, 高媛
计算机应用    2019, 39 (2): 582-588.   DOI: 10.11772/j.issn.1001-9081.2018061423
摘要417)      PDF (1232KB)(328)    收藏
针对脑部图像中存在噪声和强度失真时,基于结构信息的方法不能同时准确提取图像强度信息和边缘、纹理特征,并且连续优化计算复杂度相对较高的问题,根据图像的结构信息,提出了基于改进Zernike距的局部描述符(IZMLD)和图割(GC)离散优化的非刚性多模态脑部图像配准方法。首先,将图像配准问题看成是马尔可夫随机场(MRF)的离散标签问题,并且构造能量函数,两个能量项分别由位移矢量场的像素相似性和平滑性组成。其次,采用变形矢量场的一阶导数作为平滑项,用来惩罚相邻像素间有较大变化的位移标签;用基于IZMLD计算的相似性测度作为数据项,用来表示像素相似性。然后,在局部邻域中用图像块的Zernike矩来分别计算参考图像和浮动图像的自相似性并构造有效的局部描述符,把描述符之间的绝对误差和(SAD)作为相似性测度。最后,将整个能量函数离散化,并且使用GC的扩展优化算法求最小值。实验结果表明,与基于结构表示的熵图像的误差平方和(ESSD)、模态独立邻域描述符(MIND)和随机二阶熵图像(SSOEI)的配准方法相比,所提算法目标配准误差的均值分别下降了18.78%、10.26%和8.89%,并且比连续优化算法缩短了约20 s的配准时间。所提算法实现了在图像存在噪声和强度失真时的高效精确配准。
参考文献 | 相关文章 | 多维度评价
16. 基于多尺度密集网络的肺结节图像检索算法
秦品乐, 李启, 曾建潮, 张娜, 宋宇龙
计算机应用    2019, 39 (2): 392-397.   DOI: 10.11772/j.issn.1001-9081.2018071451
摘要459)      PDF (1084KB)(434)    收藏
现有基于内容的医学图像检索(CBMIR)算法存在特征提取的不足,导致图像的语义信息表达不完善、图像检索性能较差,为此提出一种多尺度密集网络算法以提高检索精度。首先,将512×512的肺结节图像降维到64×64,同时加入密集模块以解决提取的低层特征和高层语义特征之间的差距;其次,由于网络的不同层提取的肺结节图像信息不同,为了提高检索精度和效率,采用多尺度方法结合图像的全局特征和结节局部特征生成检索哈希码。实验结果分析表明,与自适应比特位的检索(ABR)算法相比,提出的算法在64位哈希码编码长度下的肺结节图像检索查准率可以达到91.17%,提高了3.5个百分点;检索一张肺切片需要平均时间为48 μs。所提算法的检索结果在表达图像丰富的语义特征和检索效率方面,优于其他对比的网络结构,适用于为医生临床辅助诊断提供依据、帮助患者有效治疗。
参考文献 | 相关文章 | 多维度评价
17. 基于自适应感受野机制的颈部淋巴结自动识别算法
秦品乐, 李鹏波, 张瑞平, 曾建潮, 刘仕杰, 徐少伟
计算机应用    2019, 39 (12): 3535-3540.   DOI: 10.11772/j.issn.1001-9081.2019061069
摘要498)      PDF (965KB)(407)    收藏
针对目前应用于医学影像目标检测的深度学习网络模型仅拥有固定的感受野,无法针对形态尺度差异明显的颈部淋巴结进行有效检测的问题,提出了一种新的基于自适应感受野机制的识别算法,将深度学习首次应用于完全三维医学图像的颈部淋巴结自动识别中。首先,采用半随机采样方法对医学序列图像进行裁剪,生成基于网格的局部图像块及对应真值标签;然后,通过局部图像块及标签构建并训练基于自适应感受野机制的DeepNode网络;最后,利用预训练的DeepNode网络模型进行预测,通过输入整体序列图像,可以端到端且快速地获得整体序列对应的颈部淋巴结识别结果。在颈部淋巴结数据集中,采用DeepNode网络识别颈部淋巴结的召回率可达98.13%,精确率可达97.38%,每次扫描的假阳性数量仅为29,同时耗时相对较短。实验结果分析表明,与当前表现优良的二维与三维卷积神经网络相结合的算法、三维通用目标检测算法、基于弱监督定位的识别算法等相比,所提算法可以实现颈部淋巴结的自动识别,并取得最优的识别效果。该算法端到端,简单高效,易于扩展到其他医学图像的三维目标检测任务中,可应用于临床的诊断和治疗。
参考文献 | 相关文章 | 多维度评价
18. 生成对抗残差网络的医学图像融合算法
高媛, 吴帆, 秦品乐, 王丽芳
计算机应用    2019, 39 (12): 3528-3534.   DOI: 10.11772/j.issn.1001-9081.2019050937
摘要702)      PDF (1184KB)(471)    收藏
针对传统医学图像融合中需要依靠先验知识手动设置融合规则和参数,导致融合效果存在不确定性、细节表现力不足的问题,提出了一种基于改进生成对抗网络(GAN)的脑部计算机断层扫描(CT)/磁共振(MR)图像融合算法。首先,对生成器和判别器两个部分的网络结构进行改进,在生成器网络的设计中采用残差块和快捷连接以加深网络结构,更好地捕获深层次的图像信息;然后,去掉常规网络中的下采样层,以减少图像传输过程中的信息损失,并将批量归一化改为层归一化,以更好地保留源图像信息,增加判别器网络的深度以提高网络性能;最后,连接CT图像和MR图像,将其输入到生成器网络中得到融合图像,通过损失函数不断优化网络参数,训练出最适合医学图像融合的模型来生成高质量的图像。实验结果表明,与当前表现优良的基于离散小波变换(DWT)算法、基于非下采样剪切波变换(NSCT)算法、基于稀疏表示(SR)算法和基于图像分类块稀疏表示(PSR)算法对比,所提算法在互信息(MI)、信息熵(IE)、结构相似性(SSIM)上均表现良好,最终的融合图像纹理和细节丰富,同时避免了人为因素对融合效果稳定性的影响。
参考文献 | 相关文章 | 多维度评价
19. 基于梅尔倒谱系数、深层卷积和Bagging的环境音分类方法
王天锐, 鲍骞月, 秦品乐
计算机应用    2019, 39 (12): 3515-3521.   DOI: 10.11772/j.issn.1001-9081.2019040678
摘要395)      PDF (991KB)(401)    收藏
针对传统环境音分类模型对环境音特征提取不充分,以及卷积神经网络用于环境音分类时全连接层易造成过拟合现象的问题,提出了梅尔倒谱系数(MFCC)、深层卷积和Bagging算法相结合的环境音分类方法。首先,针对原始音频文件,利用预加重、加窗、离散傅里叶变换、梅尔滤波器转换、离散余弦映射等方法建立梅尔倒谱系数特征模型;然后,将特征模型输入卷积深度网络进行第二次特征提取;最后,借鉴强化学习思想,用Bagging集成算法集成线性判别分析器、支持向量机(SVM)、Softmax回归、XGBoost四个模型,以投票预测的形式对网络输出结果进行预测。实验结果表明,所提方法能够有效提高对环境音的特征提取能力和深层网络在环境音分类上的抗过拟合能力。
参考文献 | 相关文章 | 多维度评价
20. 基于多级特征和混合注意力机制的室内人群检测网络
沈文祥, 秦品乐, 曾建潮
计算机应用    2019, 39 (12): 3496-3502.   DOI: 10.11772/j.issn.1001-9081.2019061075
摘要636)      PDF (1190KB)(602)    收藏
针对室内人群目标尺度和姿态多样性、人头目标易与周围物体特征混淆的问题,提出了一种基于多级特征和混合注意力机制的室内人群检测网络(MFANet)。该网络结构包括三部分,即特征融合模块、多尺度空洞卷积金字塔特征分解模块以及混合注意力模块。首先,通过将浅层特征和中间层特征信息融合,形成包含上下文信息的融合特征,用于解决浅层特征图中小目标语义信息不丰富、分类能力弱的问题;然后,利用空洞卷积增大感受野而不增加参数的特性,对融合特征进行多尺度分解,形成新的小目标检测分支,实现网络对多尺度目标的定位和检测;最后,用局部混合注意力模块来融合全局像素关联空间注意力和通道注意力,增强对关键信息贡献大的特征,来增强网络对目标和背景的区分能力。实验结果表明,所提方法在室内监控场景数据集SCUT-HEAD上达到了0.94的准确率、0.91的召回率和0.92的F1分数,在召回率、准确率和F1指标上均明显优于当前用于室内人群检测的其他算法。
参考文献 | 相关文章 | 多维度评价
21. 基于级联全卷积神经网络的颈部淋巴结自动识别算法
秦品乐, 李鹏波, 曾建潮, 朱辉, 徐少伟
计算机应用    2019, 39 (10): 2915-2922.   DOI: 10.11772/j.issn.1001-9081.2019030510
摘要376)      PDF (1267KB)(383)    收藏
针对现有算法自动识别颈部淋巴结效率不高、存在大量假阳性且整体假阳性去除效果不理想的问题,提出一种基于级联全卷积神经网络(FCN)的颈部淋巴结识别算法。首先,结合医生的先验知识采用级联FCN进行初步识别,即第一个FCN从头颈部计算机断层扫描图像(CT)中提取淋巴结医学分区;然后,第二个FCN从分区内提取候选样本并在三维层面合并这些样本以生成三维图像块;最后,将提出的特征块平均池化引入到三维分类网络中,对输入的不同尺度三维图像块进行二分类以去除假阳性。在颈部淋巴结数据集中,采用级联FCN识别颈部淋巴结的召回率可达97.23%;引入特征块平均池化的三维分类网络的分类准确率可达到98.7%。在去除假阳性之后的准确率可达93.26%。实验结果分析表明,所提算法能有效实现颈部淋巴结的自动识别并取得较高的召回率和准确率,优于目前相关文献报道的算法;且算法简单高效,易于扩展到其他三维医学图像的目标检测任务中。
参考文献 | 相关文章 | 多维度评价
22. 基于深度残差生成对抗网络的医学影像超分辨率算法
高媛, 刘志, 秦品乐, 王丽芳
计算机应用    2018, 38 (9): 2689-2695.   DOI: 10.11772/j.issn.1001-9081.2018030574
摘要2049)      PDF (1167KB)(999)    收藏
针对医学影像超分辨率重建过程中细节丢失导致的模糊问题,提出了一种基于深度残差生成对抗网络(GAN)的医学影像超分辨率算法。首先,算法包括生成器网络和判别器网络,生成器网络生成高分辨率图像,判别器网络辨别图像真伪。然后,通过设计生成器网络的上采样采用缩放卷积来削弱棋盘效应,并去掉标准残差块中的批量规范化层以优化网络;进一步增加判别器网络中特征图数量以加深网络等方面提高网络性能。最后,用生成损失和判别损失来不断优化网络,指导生成高质量的图像。实验结果表明,对比双线性内插、最近邻插值、双三次插值法、基于深度递归神经网络、基于生成对抗网络的超分辨率方法(SRGAN),所提算法重建出了纹理更丰富、视觉更逼真的图像。相比SRGAN方法,所提算法在峰值信噪比(PSNR)和结构相似度(SSIM)上有0.21 dB和0.32%的提升。所提算法为医学影像超分辨率的理论研究提供了深度残差生成对抗网络的方法,在其实际应用中可靠、有效。
参考文献 | 相关文章 | 多维度评价
23. 基于自适应联合字典学习的脑部多模态图像融合方法
王丽芳, 董侠, 秦品乐, 高媛
计算机应用    2018, 38 (4): 1134-1140.   DOI: 10.11772/j.issn.1001-9081.2017092291
摘要656)      PDF (1149KB)(719)    收藏
针对目前全局训练字典对于脑部医学图像的自适应性不强,以及使用稀疏表示系数的 L 1范数取极大的融合方式易造成图像的灰度不连续效应进而导致图像融合效果欠佳的问题,提出一种基于自适应联合字典学习的脑部多模态图像融合方法。该方法首先使用改进的 K奇异值分解( K-SVD)算法自适应地从已配准的源图像中学习得到子字典并组合成自适应联合字典,在自适应联合字典的作用下由系数重用正交匹配追踪(CoefROMP)算法计算得到稀疏表示系数;然后将稀疏表示系数的"多范数"作为源图像块的活跃度测量,并提出"自适应加权平均"与"选择最大"相结合的无偏规则,根据稀疏表示系数的"多范数"的相似度选择融合规则,当"多范数"的相似度大于阈值时,使用"自适应加权平均"的规则,反之则使用"选择最大"的规则融合稀疏表示系数;最后根据融合系数与自适应联合字典重构融合图像。实验结果表明,与其他三种基于多尺度变换的方法和五种基于稀疏表示的方法相比,所提方法的融合图像能够保留更多的图像细节信息,对比度和清晰度较好,病灶边缘清晰,客观参数标准差、空间频率、互信息、基于梯度指标、基于通用图像质量指标和平均结构相似指标在三组实验条件下的均值分别为:71.0783、21.9708、3.6790、0.6603、0.7352和0.7339。该方法可以应用于临床诊断和辅助治疗。
参考文献 | 相关文章 | 多维度评价
24. 基于多通道稀疏编码的非刚性多模态医学图像配准
王丽芳, 成茜, 秦品乐, 高媛
计算机应用    2018, 38 (4): 1127-1133.   DOI: 10.11772/j.issn.1001-9081.2017102392
摘要575)      PDF (1067KB)(423)    收藏
针对稀疏编码相似性测度在非刚性医学图像配准中对灰度偏移场具有较好的鲁棒性,但只适用于单模态医学图像配准的问题,提出基于多通道稀疏编码的非刚性多模态医学图像配准方法。该方法将多模态配准问题视为一个多通道配准问题来解决,每个模态在一个单独的通道下运行;首先对待配准的两幅图像分别进行合成和正则化,然后划分通道和图像块,使用 K奇异值分解( K-SVD)算法训练每个通道中的图像块得到分析字典和稀疏系数,并对每个通道进行加权求和,采用多层P样条自由变换模型来模拟非刚性几何形变,结合梯度下降法优化目标函数。实验结果表明,与局部互信息、多通道局部方差和残差复杂性(MCLVRC)、多通道稀疏诱导的相似性测度(MCSISM)、多通道Rank Induced相似性测度(MCRISM)多模态相似性测度相比,均方根误差分别下降了30.86%、22.24%、26.84%和16.49%。所提方法能够有效克服多模态医学图像配准中灰度偏移场对配准的影响,提高配准的精度和鲁棒性。
参考文献 | 相关文章 | 多维度评价
25. 基于残差神经网络的图像超分辨率改进算法
王一宁, 秦品乐, 李传朋, 崔雨豪
计算机应用    2018, 38 (1): 246-254.   DOI: 10.11772/j.issn.1001-9081.2017061461
摘要732)      PDF (1533KB)(650)    收藏
为更有效地提升图像的超分辨率(SR)效果,提出了一种多阶段级联残差卷积神经网络模型。首先,该模型采用了两阶段超分辨率图像重建方法先重建2倍超分辨率图像,再重建4倍超分辨率图像;其次,第一阶段与第二阶段皆使用残差层和跳层结构预测出高分辨率空间的纹理信息,由反卷积层分别重建出2倍与4倍大小的超分辨率图像;最后,以两阶段的结果分别构建多任务损失函数,利用第一阶段的损失指导第二阶段的损失,从而提高网络的训练速度,加强网络学习中的监督指导。实验结果表明,与bilinear算法、bicubic算法、基于卷积神经网络的图像超分辨率(SRCNN)算法和加速的超分辨率卷积神经网络(FSRCNN)算法相比,所提模型能更好地重建出图像的细节和纹理,避免了经过迭代之后造成的图像过度平滑,获得更高的峰值信噪比(PSNR)和平均结构相似度(MSSIM)。
参考文献 | 相关文章 | 多维度评价
26. 改进耦合字典学习的脑部CT/MR图像融合方法
董侠, 王丽芳, 秦品乐, 高媛
计算机应用    2017, 37 (6): 1722-1727.   DOI: 10.11772/j.issn.1001-9081.2017.06.1722
摘要691)      PDF (1146KB)(760)    收藏
针对目前使用单字典表示脑部医学图像难以得到精确的稀疏表示进而导致图像融合效果欠佳,以及字典训练时间过长的问题,提出了一种改进耦合字典学习的脑部计算机断层成像(CT)/磁共振成像(MR)图像融合方法。该方法首先将CT和MR图像对作为训练集,使用改进的K奇异值分解(K-SVD)算法联合训练分别得到耦合的CT字典和MR字典,再将CT和MR字典中的原子作为训练图像的特征,并使用信息熵计算字典原子的特征指标;然后,将特征指标相差较小的原子看作公共特征,其余为各自特征,并分别使用"平均"和"选择最大"的规则融合CT和MR字典的公共特征和各自特征得到融合字典;其次,将配准的源图像编纂成列向量并去除均值,在融合字典的作用下由系数重用正交匹配追踪(CoefROMP)算法计算得到精确的稀疏表示系数,再分别使用"2范数最大"和"加权平均"的规则融合稀疏表示系数和均值向量;最后通过重建得到融合图像。实验结果表明,相对于3种基于多尺度变换的方法和3种基于稀疏表示的方法,所提方法融合后图像在亮度、清晰度和对比度上都更优,客观参数互信息、基于梯度、基于相位一致和基于通用图像质量指标在三组实验条件下的均值分别为:4.1133、0.7131、0.4636和0.7625,字典学习在10次实验条件下所消耗的平均时间为5.96 min。该方法可以应用于临床诊断和辅助治疗。
参考文献 | 相关文章 | 多维度评价
27. 基于连接突触计算网络的医学图像融合算法
高媛, 贾紫婷, 秦品乐, 王丽芳
计算机应用    2017, 37 (12): 3554-3557.   DOI: 10.11772/j.issn.1001-9081.2017.12.3554
摘要463)      PDF (871KB)(833)    收藏
针对传统的脉冲耦合神经网络(PCNN)融合方法中参数过多,以及参数和网络迭代次数难以准确设置、融合效果差等缺点,提出了一种用连接突触计算网络(LSCN)模型的连接项(L项)进行图像融合的算法。首先,把两幅待融合图像分别输入到LSCN模型中;其次,使用L项代替传统PCNN中的点火频率作为输出;然后,使用多通工作方式终止迭代;最后,通过比较L项的值得到融合后图像的像素。理论分析与实验结果表明,与改进的PCNN模型和在PCNN模型的基础上提出的新模型进行图像融合的算法进行比较,所提算法得到的融合图像更有利于人眼观察;特别是与点火频率作为输出的LSCN方法相比,所提算法在边缘信息评价因子、信息熵、标准差、空间频率、平均梯度上均较优。该算法简单易行,不仅减少了待定参数数目,降低了计算复杂度,而且解决了传统模型中迭代次数难以确定的问题。
参考文献 | 相关文章 | 多维度评价
28. 基于多新息理论的深度信念网络算法
李萌, 秦品乐, 李传朋
计算机应用    2016, 36 (9): 2521-2525.   DOI: 10.11772/j.issn.1001-9081.2016.09.2521
摘要687)      PDF (911KB)(348)    收藏
针对深度信念网络(DBN)算法在采用反向传播修正网络的连接权值和偏置的过程中,容易产生梯度小、学习率低、误差收敛速度慢等问题,提出一种结合多新息理论对标准DBN算法进行改进的算法,即多新息DBN(MI-DBN)。MI-DBN算法是对标准DBN算法中反向传播的过程重新建模,使得算法在原先只利用单个新息的情况下,扩展为能够充分利用之前多个周期的新息,从而大幅提高误差收敛速度。通过实验对MI-DBN算法和其他分类算法进行了数据集分类的比较,实验结果表明,MI-DBN算法相较其他分类算法,其误差收敛速度较快,而且最终对MNIST数据集和Caltech101数据集的识别中误差结果相对更小。
参考文献 | 相关文章 | 多维度评价
29. 基于HSI亮度分量和RGB空间的图像去雾算法
李慧慧, 秦品乐, 梁军
计算机应用    2016, 36 (5): 1378-1382.   DOI: 10.11772/j.issn.1001-9081.2016.05.1378
摘要371)      PDF (834KB)(494)    收藏
图像去雾技术处理的目的是消除雾霾对视频监控图像的影响,提高雾霾图像的视觉效果。目前,一般去雾图像只是比较去雾后和去雾前的图像,处理结果通常失真严重或过饱和,不能在保证细节清晰的同时保证颜色信息完整。针对上述问题,提出了一种基于大气散射模型和光学原理,建立具有散射特性的HIS亮度转换模型,并与RGB空间结合计算的图像复原方法。该方法通过分析晴天图像和雾霾图像的对比关系,结合HSI空间人眼视觉最敏感的亮度分量计算出图像场景的相对深度关系,利用大气散射模型以及景深比,对雾霾视频图像进行清晰复原和结果的测评。实验结果证明,与只从RGB空间计算的去雾霾方法对比,所提方法去雾效果更清晰,彩色失真和过饱和程度更小。
参考文献 | 相关文章 | 多维度评价