[1] 3·15曝光刷单超详细过程曝光淘宝刷单黑产业[EB/OL].[2016-03-16]. https://v.qq.com/x/page/a0188rpxwvn.html. (3·15 exposure the detailed process of click farming and exposure Taobao black industry click farming[EB/OL].[2016-03-16].https://v.qq.com/x/page/a0188rpxwvn.html.) [2] 贺骏.电商刷单产业链屡禁不止京东利用大数据"捉妖"[EB/OL].[2016-03-21]. http://tech.hexun.com/2016-03-21/182861037.html. (HE J. E-commerce industry chain of click farming repeatedly banned, Jingdong use big data "catch demon"[EB/OL].[2016-03-21]. http://tech.hexun.com/2016-03-21/182861037.html) [3] 新浪.详细解读淘宝稽查系统的主证与旁证系统[EB/OL].[2016-10-11]. http://edu.yjbys.com/taobao/104994.html. (Sina. Detailed interpretation of the main symptom and circumstantial evidence system of Taobao check system[EB/OL].[2016-10-11]. http://edu.yjbys.com/taobao/104994.html.) [4] COUELLAN N, WANG W. Uncertainty-safe large scale support vector machines[J]. Computational Statistics and Data Analysis, 2017, 109:215-230. [5] 高雷阜,王飞.基于混沌更新策略的蜂群算法在SVM参数优化中的应用[J].计算机工程与科学,2017,39(1):199-205. (GAO L F, WANG F. Application of artificial bee colony based on chaos update strategy in support vector machine parameter optimization[J]. Computer Engineering & Science, 2017, 39(1):199-205.) [6] MOKHTARI A, RIBEIRO A. A Quasi-Newton method for large scale support vector machines[C]//ICASSP 2014:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2014:8302-8306. [7] CHANG C-C, LIN C-J. LIBSVM-a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):Article No. 27. [8] 何东健.SVM支持向量机算法的详细推导[EB/OL].[2016-05-10]. http://www.doc88.com/p-1905946677891.html. (HE D J. Detailed derivation of Support Vector Machine (SVM) algorithm[EB/OL].[2016-05-10]. http://www.doc88.com/p-1905946677891.html.) [9] 熊浩勇.基于SVM的中文文本分类算法研究与实现[D].武汉:武汉理工大学,2008. (XIONG H Y. Research and implement of Chinese text categorization algorithm based on SVM[D]. Wuhan:Wuhan University of Technology, 2008.) [10] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. [11] XIE L, LI G, XIAO M, et al. Hyperspectral image classification using discrete space model and support vector machines[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):374-378. [12] VOISAN E I, PRECUP R E, DRAGAN F. Facial expression recognition system based on a face statistical model and Support Vector Machines[C]//SACI 2016:Proceedings of the 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics. Piscataway, NJ:IEEE, 2016:63-68. [13] LI J, CAO Y, WANG Y, et al. Online learning algorithms for double-weighted least squares twin bounded support vector machines[J]. Neural Processing Letters, 2017, 45(1):319-339. [14] 王雅玡.基于朴素贝叶斯和BP神经网络的中文文本分类问题研究[D].昆明:云南师范大学,2008. (WANG Y Y. Researching on Chinese text classification based on naive bayes and BP neural network[D]. Kunming:Yunnan Normal University, 2008.) [15] AAZI F Z, ABDESSELAM R, ACHCHAB B, et al. Feature selection selection for multiclass support vector machines[J]. AI Communications, 2016, 29(5):583-593. |