[1] LI J,LIANG X,WEI Y,et al. Perceptual generative adversarial networks for small object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1951-1959. [2] ZHANG H,YANG J,ZHANG Y,et al. Close the loop:joint blind image restoration and recognition with sparse representation prior[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway:IEEE,2011:770-777. [3] WANG X,YU K,WU S,et al. ESRGAN:enhanced super-resolution generative adversarial networks[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11133. Cham:Springer,2018:63-79. [4] KUPYN O,BUDZAN V,MYKHAILYCH M,et al. DeblurGAN:blind motion deblurring using conditional adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8183-8192. [5] 杨玲, 刘怡光, 黄蓉刚, 等. 新的基于稀疏表示单张彩色超分辨率算法[J]. 计算机应用,2013,33(2):472-475.(YANG L,LIU Y G,HUANG R G,et al. New approach for super-resolution from a single color image based on sparse coding[J]. Journal of Computer Applications,2013,33(2):472-475.) [6] HUANG J B,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5197-5206. [7] DONG C,LOY C C,HE K,et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham:Springer,2014:184-199. [8] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [9] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:136-144. [10] LEDIG C,THEIS L,HUSZÁR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4681-4690. [11] HARMELING S,HIRSCH M,SCHÖLKOPF B. Space-variant single-image blind deconvolution for removing camera shake[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2010:829-837. [12] 陈华华, 鲍宗袍. 强边缘导向的盲去模糊算法[J]. 中国图象图形学报,2017,22(8):1034-1044. (CHEN H H,BAO Z P. Strong edge-oriented blind deblurring algorithm[J]. Journal of Image and Graphics,2017,22(8):1034-1044.) [13] TAO X,GAO H,SHEN X,et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8174-8182. [14] PARK H,LEE K M. Joint estimation of camera pose,depth,deblurring,and super-resolution from a blurred image sequence[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:4623-4631. [15] YAMAGUCHI T,FUKUDA H,FURUKAWA R,et al. Video deblurring and super-resolution technique for multiple moving objects[C]//Proceedings of the 10th Asian Conference on Computer Vision,LNCS 6495. Berlin:Springer,2010:127-140. [16] XU X,SUN D,PAN J,et al. Learning to super-resolve blurry face and text images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:251-260. [17] ZHANG X,WANG F,DONG H,et al. A deep encoder-decoder networks for joint deblurring and super-resolution[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE,2018:1448-1452. [18] PAN J,LIU Y,DONG J,et al. Physics-based generative adversarial models for image restoration and beyond[EB/OL].[2018-08-02]. https://arxiv.org/pdf/1808.00605.pdf. [19] ZHANG X,DONG H,HU Z,et al. Gated fusion network for joint image deblurring and super-resolution[EB/OL].[2018-07-27]. https://arxiv.org/pdf/1807.10806.pdf. [20] ISOLA P,ZHU J,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [21] LIN M,CHEN Q,YAN S. Network in network[EB/OL].[2018-12-16]. https://arxiv.org/pdf/1312.4400.pdf. [22] NAH S,KIM T H,LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:3883-3891. [23] JOHNSON J,ALAHI A,LI F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:694-711. [24] HRADIŠ M,KOTERA J,ZEMČÍK P,et al. Convolutional neural networks for direct text deblurring[C]//Proceedings of the 2015 British Machine Vision Conference. Durham:BMVA, 2015:No. 6. [25] KINGMA D P,BA J L. Adam:a method for stochastic optimization[EB/OL].[2018-12-22]. https://arxiv.org/pdf/1412.6980.pdf. [26] HE K,ZHANG X,REN S,et al. Delving deep into rectifiers:Surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [27] SAJJADI M S M,SCHÖLKOPF B,HIRSCH M. EnhanceNet:single image super-resolution through automated texture synthesis[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:4491-4510. |