1 李力行,战永平,付春丽.稠油开采方法综述[J].硅谷,2008(12):86-87,29. LI L X,ZHAN Y P,FU C L.Summary of heavy oil mining methods [J]. Silicon Valley, 2008(12): 86-87, 29. 2 甘露.极限学习机的研究与应用[D].西安:西安电子科技大学,2014:9-22. GANL. Research and application of extreme learning machine [J]. Xi’an: Xidian University, 2014: 9-22. 3 ZHENGJ, DONGZ, PANH, et al. Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing [J]. Measurement, 2019, 143:69-80. 4 LAW A, GHOSHA. Multi-label classification using a cascade of stacked autoencoder and extreme learning machines [J]. Neurocomputing, 2019, 358: 222-234. 5 BAOR, CHENW, TANGG, et al. Classification of fresh and processed strawberry cultivars based on quality characteristics by using support vector machine and extreme learning machine [J]. Journal of Berry Research, 2018, 8(2): 81-94. 6 SHIHABUDHEENK V, MAHESHM, PILLAIG N. Particle swarm optimization based extreme learning neuro-fuzzy system for regression and classification [J]. Expert Systems with Applications, 2018, 92: 474-484. 7 SHANMUGAPRIYAD, PADMAVATHIG. A wrapper based feature subset selection using ACO-ELM-ANP and GA-ELM-ANP approaches for keystroke dynamics authentication [C]// Proceedings of the 2013 International Conference on Signal Processing, Image Processing and Pattern Recognition. Piscataway: IEEE, 2013:157-162. 8 SUNJ, WUX, PALADEV, et al. Convergence analysis and improvements of quantum-behaved particle swarm optimization [J]. Information Sciences, 2012, 193: 81-103. 9 YANGX, KARAMANOGLUM, HEX. Flower pollination algorithm: a novel approach for multi-objective optimization [J]. Engineering Optimization, 2014, 46(9): 1222-1237. 10 GAOY, ZHANGF, GUOQ, et al. Research on the searching performance of flower pollination algorithm with three random walks [J]. Journal of Intelligent and Fuzzy Systems, 2018, 35(1): 333-341. 11 肖辉辉,万常选,段艳明,等.基于模拟退火的花朵授粉优化算法[J].计算机应用,2015,35(4):1062-1066,1070. XIAOH H, WANC X, DUANY M, et al. Flower pollination algorithm based on simulated annealing [J]. Journal of Computer Applications, 2015, 35(4): 1062-1066,1070. 12 金鹏.改进量子行为粒子群算法的研究及其在优化问题中的应用[D].徐州:中国矿业大学,2018:22-27. JINGP. Research on improved quantum-behaved particle swarm optimization and its application in optimization problems [D]. Xuzhou: China University of Mining and Technology, 2018: 22-27. 13 HUANGG B, ZHUQ, SIEWC K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501. 14 Sparse extreme learning machine for classification [J]. IEEE Transactions on Cybernetics, 2014, 44(10): 1858-1870. 15 GAOX, ZHANGZ Y, DUANL M. A quantum machine learning algorithm based on generative models [J]. Science Advances, 2018, 4(12): NoArticle. eaat9004. 16 HUANGG B. Reply to “Comments on “the extreme learning machine””[J]. IEEE Transactions on Neural Networks, 2008, 19(8): 1495-1496. 17 赵媛,郝丽莎.我国石油资源空间流动的形成机制[J].地理研究,2008,27(5):1027-1036. ZHAOY, HAOL S. The forming mechanism of crude oil flow in China [J]. Geographical Research, 2008, 27(5):1027-1036. |