[1] SOLTANPOUR M R, KHOOBAN M H. A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator[J]. Nonlinear Dynamics,2013,74(1/2):467-478. [2] OLIVEIRA J,OLIVEIRA P M,BOAVENTURA-CUNHA J,et al. Chaos-based grey wolf optimizer for higher order sliding mode position control of a robotic manipulator[J]. Nonlinear Dynamics, 2017,90(2):1353-1362. [3] WANG Z,LIU X,LIU K,et al. Backstepping-based Lyapunov function construction using approximate dynamic programming and sum of square techniques[J]. IEEE Transactions on Cybernetics, 2017,47(10):3393-3403. [4] LU E,YANG X,LI W,et al. Tip position control of single flexible manipulators based on LQR with the Mamdani model[J]. Journal of Vibroengineering,2016,18(6):3695-3708. [5] YIN X,WANG H,WU G. Path planning algorithm for bending robots[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE,2009:392-395. [6] LI X,YANG G. Adaptive decentralized control for a class of interconnected nonlinear systems via backstepping approach and graph theory[J]. Automatica,2017,76:87-95. [7] NGO T,WANG Y,MAI T L,et al. Robust adaptive neural-fuzzy network tracking control for robot manipulator[J]. International Journal of Computers Communications and Control,2012,7(2):341-352. [8] KORMUSHEV P, CALINON S, CALDWELL D G. Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input[J]. Advanced Robotics,2011,25(5):581-603. [9] ZHANG F,LEITNER J,MILFORD M,et al. Towards visionbased deep reinforcement learning for robotic motion control[EB/OL].[2020-09-05]. https://arxiv.org/pdf/1511.03791.pdf. [10] 李铭浩, 张华, 刘满禄, 等. 基于深度强化学习的机械臂容错控制方法[J]. 传感器与微系统, 2020, 39(1):53-55, 59.(LI M H, ZHANG H,LIU M L,et al. Fault tolerant control method of manipulator based on deep reinforcement learning[J]. Transducer and Microsystem Technologies,2020,39(1):53-55,59.) [11] MNIH V,BADIA A P,MIRZA M,et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 2016 33rd International Conference on Machine Learning. New York:JMLR. org,2016:1928-1937. [12] 刘成亮, 戈新生. 一类二连杆欠驱动机器人系统的稳定控制[J]. 北京信息科技大学学报(自然科学版), 2017, 32(3):25-29.(LIU C L,GE X S. Stability control to a kind of two-link underactuated robot system[J]. Journal of Beijing Information Science & Technology University,2017,32(3):25-29.) [13] 万仁卓, 王思源, 冯绎铭, 等. 基于二连杆任务的深度强化学习算法分析与比较[J]. 湖北科技学院学报, 2019, 39(3):151-156.(WAN R Z,WANG S Y,FENG Y M,et al. Analysis and comparison of deep reinforcement learning algorithms based on twolink task[J]. Journal of Hubei University of Science and Technology,2019,39(3):151-156.) [14] MNIH V,KAVUKCUOGLU K,SILVER D,et al. Playing Atari with deep reinforcement learning[EB/OL].[2020-09-05]. https://arxiv.org/pdf/1312.5602.pdf. [15] LILLICRAP T P,HUNT J J,PRITZEL A,et al. Continuous control with deep reinforcement learning[EB/OL].[2020-09-05]. https://arxiv.org/pdf/1509.02971v2.pdf. [16] SCHULMAN J,WOLSKI F,DHARIWAL P,et al. Proximal policy optimization algorithms[EB/OL].[2020-09-05]. https://arxiv.org/pdf/1707.06347.pdf. |