[1] ZHONG E,FAN W,WANG J,et al. ComSoc:adaptive transfer of user behaviors over composite social network[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:696-704. [2] 陈克寒, 韩盼盼, 吴健. 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报,2013,36(2):349-359.(CHEN K H,HAN P P,WU J. User clustering based social network recommendation[J]. Chinese Journal of Computers,2013,36(2):349-359.) [3] DENG Z,HE B,YU C,et al. Personalized friend recommendation in social network based on clustering method[C]//Proceedings of the 2012 International Symposium on Intelligence Computation and Applications,CCIS 316. Berlin:Springer,2012:84-91. [4] 马铁民, 周福才, 王爽. 基于用户相似度的随机游走社交网络事件推荐算法[J]. 东北大学学报(自然科学版),2019,40(11):1533-1538.(MA T M,ZHOU F C,WANG S. Social network event recommendation algorithms based on user similarity random walk[J]. Journal of Northeastern University(Natural Science),2019, 40(11):1533-1538.) [5] 刘晓飞, 朱斐, 伏玉琛, 等. 基于用户偏好特征挖掘的个性化推荐算法[J]. 计算机科学,2020,47(4):50-53.(LIU X F,ZHU F,FU Y C,et al. Personalized recommendation algorithm based on user preference feature mining[J]. Computer Science,2020,47(4):50-53.) [6] DENG Z,SANG J,XU C. Personalized video recommendation based on cross-platform user modeling[C]//Proceedings of the 2013 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE,2013:1-6. [7] 彭舰, 王屯屯, 陈瑜, 等. 基于跨平台的在线社交网络用户推荐研究[J]. 通信学报,2018,39(3):147-158.(PENG J,WANG T T,CHEN Y,et al. User recommendation based on cross-platform online social networks[J]. Journal on Communications,2018,39(3):147-158.) [8] 时宇岑, 印莹, 赵宇海, 等. 基于多开发者社区的用户推荐算法[J]. 软件学报,2019,30(5):1561-1574.(SHI Y C,YIN Y, ZHAO Y H,et al. User recommendation algorithm based on multideveloper community[J]. Journal of Software,2019,30(5):1561-1574.) [9] 文凯, 朱传亮, 何少元. 结合用户社区和评分矩阵联合社区的推荐算法研究[J]. 小型微型计算机系统,2019,40(10):2119-2124.(WEN K,ZHU C L,HE S Y. Research on recommendation algorithm combining user community and score matrix joint community[J]. Journal of Chinese Computer Systems,2019,40(10):2119-2124.) [10] DUGUÉ N,PEREZ A. Directed Louvain:maximizing modularity in directed networks:hal-01231784[R]. Orléans:Université d'Orléans,2015:1-14 [11] ILIEVSKI F,VOSSEN P,VAN ERP M. Hunger for contextual knowledge and a road map to intelligent entity linking[C]//Proceedings of the 2017 International Conference on Language, Data and Knowledge, LNCS 10318. Cham:Springer, 2017:143-149. [12] GUO L,ZHANG Q,GE W,et al. DSKG:a deep sequential model for knowledge graph completion[C]//Proceedings of the 2018 China Conference on Knowledge Graph and Semantic Computing,CCIS 957. Singapore:Springer,2018:65-77. [13] ŽALIK K R. Evolution algorithm for community detection in social networks using node centrality[M]//BEMBENIK R, SKONIECZNY Ł,PROTAZIUK G,et al. Intelligent Methods and Big Data in Industrial Applications. Cham:Springer, 2019:73-87. [14] ALEMI M,HAGHIGHI H,SHAHRIVARI S. CCFinder:using Spark to find clustering coefficient in big graphs[J]. The Journal of Supercomputing,2017,73(11):4683-4710. [15] 马江涛. 基于社交网络的知识图谱构建技术研究[D]. 郑州:战略支援部队信息工程大学,2018:30-38.(MA J T. Research on knowledge graph construction technology based on social network[D]. Zhengzhou:Information Engineering University, 2018:30-38.) [16] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].[2020-11-12]. https://arxiv.org/pdf/1301.3781.pdf. [17] HENZINGER M,KRINNINGER S,NANONGKAI D. Sublineartime maintenance of breadth-first spanning trees in partially dynamic networks[J]. ACM Transactions on Algorithms,2017, 13(4):No. 51. [18] MINERVINI P,D'AMATO C,FANIZZI N,et al. Leveraging the schema in latent factor models for knowledge graph completion[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing. New York:ACM,2016:327-332. [19] MAIER B F,HUEPE C,BROCKMANN D. Modular hierarchical and power-law small-world networks bear structural optima for minimal first passage times and cover time[J]. Journal of Complex Networks,2019,7(6):865-895. |