[1] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:3354-3361. [2] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3141-3149. [3] JIANG W H, XIE Z Z, LI Y Y, et al. LRNNet:a light-weighted network with efficient reduced non-local operation for real-time semantic segmentation[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo Workshops. Piscataway:IEEE, 2020:1-6. [4] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:3431-3440. [5] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [6] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07)[2020-10-01]. https://arxiv.org/pdf/1412.7062.pdf. [7] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [9] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05)[2020-10-24]. https://arxiv.org/pdf/1706.05587.pdf. [10] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham:Springer, 2018:833-851. [11] 祖朋达, 李晓敏, 陈更生, 等. DODNet:一种扩张卷积优化的图像语义分割模型[J]. 复旦学报(自然科学版), 2020, 59(5):585-598, 607.(ZU P D, LI X M, CHEN G S, et al. DODNet:an image semantic segmentation model with optimized extended convolution[J]. Journal of Fudan University(Natural Science), 2020, 59(5):585-598, 607.) [12] YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:3684-3692. [13] 喻根, 崔炜, 徐照翔, 等. 基于DeepLabV3+的远距离目标语义分割模型[J]. 电光与控制, 2021, 28(1):66-70.(YU G, CUI W, XU Z X, et al. A semantic segmentation model of long-distance targets based on DeepLabV3+[J]. Electronics Optics and Control, 2021, 28(1):66-70.) [14] ROMERA E, ÁLVAREZ J M, BERGASA L M, et al. ERFNet:efficient residual factorized convnet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):263-272. [15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7132-7141. [16] CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:3213-3223. [17] BROSTOW G J, FAUQUEUR J, CIPOLLA R. Semantic object classes in video:a high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2):88-97. [18] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2018:1451-1460. [19] ZHANG Z P, ZHANG K P. FarSee-Net:real-time semantic segmentation by efficient multi-scale context aggregation and feature space super-resolution[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2020:8411-8417. [20] YU C Q, WANG J B, PENG C, et al. BiSeNet:bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham:Springer, 2018:339-349. [21] LI H C, XIONG P F, FAN H Q, et al. DFANet:deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:9514-9523. [22] ZHAO H S, QI X J, SHEN X Y, et al. ICNet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham:Springer, 2018:418-434. |