Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3519-3528.DOI: 10.11772/j.issn.1001-9081.2024111665
• Artificial intelligence • Previous Articles
Ke GAN, Xiaofei ZHU(
), Jiawei CHENG
Received:2024-11-27
Revised:2025-04-11
Accepted:2025-04-18
Online:2025-04-22
Published:2025-11-10
Contact:
Xiaofei ZHU
About author:GAN Ke, born in 2000, M. S. candidate. His research interests include natural language processing, knowledge graph recommendation.Supported by:通讯作者:
朱小飞
作者简介:甘轲(2000—),男,四川广安人,硕士研究生,主要研究方向:自然语言处理、知识图谱推荐基金资助:CLC Number:
Ke GAN, Xiaofei ZHU, Jiawei CHENG. Recommendation method based on multi-perspective relation-enhanced knowledge graph[J]. Journal of Computer Applications, 2025, 45(11): 3519-3528.
甘轲, 朱小飞, 程佳玮. 基于多视角关系增强知识图谱的推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3519-3528.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111665
| 数据集 | 用户数 | 物品数 | 交互数 | 密度 | 知识图谱 | ||
|---|---|---|---|---|---|---|---|
| 实体数 | 关系数 | 三元 组数 | |||||
| Last.FM | 1 872 | 3 846 | 42 346 | 0.005 9 | 9 366 | 60 | 15 518 |
| ML | 6 036 | 2 347 | 753 772 | 0.053 1 | 6 729 | 7 | 20 195 |
Tab. 1 Dataset statistics
| 数据集 | 用户数 | 物品数 | 交互数 | 密度 | 知识图谱 | ||
|---|---|---|---|---|---|---|---|
| 实体数 | 关系数 | 三元 组数 | |||||
| Last.FM | 1 872 | 3 846 | 42 346 | 0.005 9 | 9 366 | 60 | 15 518 |
| ML | 6 036 | 2 347 | 753 772 | 0.053 1 | 6 729 | 7 | 20 195 |
| 数据集 | 模型 | Metric@1 | Metric@5 | Metric@10 | Metric@20 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Recall | NDCG | HR | Recall | NDCG | HR | Recall | NDCG | HR | Recall | NDCG | HR | ||
| Last.FM | NFM | 1.50 | 3.90 | 3.90 | 5.95 | 4.80 | 13.20 | 9.52 | 6.26 | 23.10 | 14.97 | 8.05 | 29.90 |
| CKE | 4.43 | 10.31 | 10.31 | 13.06 | 11.26 | 26.58 | 18.85 | 13.62 | 25.02 | 26.95 | 16.25 | 46.11 | |
| KGAT | 2.41 | 5.67 | 5.67 | 7.86 | 9.49 | 16.74 | 12.56 | 12.58 | 25.92 | 20.59 | 16.71 | 37.67 | |
| KGTN | 4.71 | 10.90 | 10.90 | 13.40 | 14.30 | 27.37 | 19.59 | 14.12 | 37.14 | 28.06 | 16.87 | 48.87 | |
| KGIN | 6.06 | 13.98 | 13.98 | 17.42 | 15.24 | 35.92 | 24.96 | 18.32 | 47.07 | 35.49 | 21.69 | 59.07 | |
| VRKG4Rec | |||||||||||||
| RMPREKG | 7.23 | 17.30 | 17.30 | 21.12 | 18.56 | 41.47 | 29.73 | 22.08 | 53.04 | 39.69 | 25.36 | 63.89 | |
| ML | NFM | 2.98 | 27.70 | 27.70 | 11.62 | 24.88 | 62.40 | 17.88 | 23.80 | 74.40 | 27.59 | 24.84 | 84.30 |
| CKE | 3.85 | 33.54 | 33.54 | 13.62 | 28.75 | 66.65 | 21.19 | 27.89 | 78.29 | 31.30 | 29.18 | 86.51 | |
| KGAT | 2.63 | 23.15 | 23.15 | 10.03 | 20.68 | 57.01 | 16.59 | 21.09 | 71.59 | 26.37 | 23.05 | 82.15 | |
| KGTN | 2.97 | 27.55 | 27.55 | 10.63 | 23.76 | 59.90 | 17.40 | 23.80 | 72.84 | 26.91 | 24.76 | 82.67 | |
| KGIN | 4.69 | 11.99 | 11.99 | 12.92 | 31.22 | 22.66 | 15.95 | 43.22 | 31.50 | 19.35 | 53.22 | ||
| VRKG4Rec | 4.29 | 15.01 | |||||||||||
| RMPREKG | 37.28 | 37.28 | 15.18 | 31.81 | 70.54 | 23.63 | 30.89 | 81.89 | 34.46 | 32.28 | 88.39 | ||
Tab. 2 Performance comparison for different recommendation lengths
| 数据集 | 模型 | Metric@1 | Metric@5 | Metric@10 | Metric@20 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Recall | NDCG | HR | Recall | NDCG | HR | Recall | NDCG | HR | Recall | NDCG | HR | ||
| Last.FM | NFM | 1.50 | 3.90 | 3.90 | 5.95 | 4.80 | 13.20 | 9.52 | 6.26 | 23.10 | 14.97 | 8.05 | 29.90 |
| CKE | 4.43 | 10.31 | 10.31 | 13.06 | 11.26 | 26.58 | 18.85 | 13.62 | 25.02 | 26.95 | 16.25 | 46.11 | |
| KGAT | 2.41 | 5.67 | 5.67 | 7.86 | 9.49 | 16.74 | 12.56 | 12.58 | 25.92 | 20.59 | 16.71 | 37.67 | |
| KGTN | 4.71 | 10.90 | 10.90 | 13.40 | 14.30 | 27.37 | 19.59 | 14.12 | 37.14 | 28.06 | 16.87 | 48.87 | |
| KGIN | 6.06 | 13.98 | 13.98 | 17.42 | 15.24 | 35.92 | 24.96 | 18.32 | 47.07 | 35.49 | 21.69 | 59.07 | |
| VRKG4Rec | |||||||||||||
| RMPREKG | 7.23 | 17.30 | 17.30 | 21.12 | 18.56 | 41.47 | 29.73 | 22.08 | 53.04 | 39.69 | 25.36 | 63.89 | |
| ML | NFM | 2.98 | 27.70 | 27.70 | 11.62 | 24.88 | 62.40 | 17.88 | 23.80 | 74.40 | 27.59 | 24.84 | 84.30 |
| CKE | 3.85 | 33.54 | 33.54 | 13.62 | 28.75 | 66.65 | 21.19 | 27.89 | 78.29 | 31.30 | 29.18 | 86.51 | |
| KGAT | 2.63 | 23.15 | 23.15 | 10.03 | 20.68 | 57.01 | 16.59 | 21.09 | 71.59 | 26.37 | 23.05 | 82.15 | |
| KGTN | 2.97 | 27.55 | 27.55 | 10.63 | 23.76 | 59.90 | 17.40 | 23.80 | 72.84 | 26.91 | 24.76 | 82.67 | |
| KGIN | 4.69 | 11.99 | 11.99 | 12.92 | 31.22 | 22.66 | 15.95 | 43.22 | 31.50 | 19.35 | 53.22 | ||
| VRKG4Rec | 4.29 | 15.01 | |||||||||||
| RMPREKG | 37.28 | 37.28 | 15.18 | 31.81 | 70.54 | 23.63 | 30.89 | 81.89 | 34.46 | 32.28 | 88.39 | ||
| 模型 | Last.FM | ML | ||||
|---|---|---|---|---|---|---|
| Recall | NDCG | HR | Recall | NDCG | HR | |
| RMPREKG | 39.69 | 25.36 | 63.89 | 34.46 | 32.28 | 88.39 |
| w/o align | 39.09 | 24.76 | 62.68 | 33.74 | 31.65 | 87.63 |
| w/o mask | 39.43 | 24.83 | 63.08 | 34.33 | 32.17 | 88.23 |
| w/o ecl | 38.86 | 24.69 | 62.16 | 33.31 | 30.96 | 87.54 |
| w/o layer | 39.30 | 24.61 | 62.84 | 34.25 | 32.18 | 88.18 |
| w/o channel | 39.42 | 25.03 | 63.04 | 34.30 | 32.17 | 88.27 |
Tab. 3 Ablation experimental results
| 模型 | Last.FM | ML | ||||
|---|---|---|---|---|---|---|
| Recall | NDCG | HR | Recall | NDCG | HR | |
| RMPREKG | 39.69 | 25.36 | 63.89 | 34.46 | 32.28 | 88.39 |
| w/o align | 39.09 | 24.76 | 62.68 | 33.74 | 31.65 | 87.63 |
| w/o mask | 39.43 | 24.83 | 63.08 | 34.33 | 32.17 | 88.23 |
| w/o ecl | 38.86 | 24.69 | 62.16 | 33.31 | 30.96 | 87.54 |
| w/o layer | 39.30 | 24.61 | 62.84 | 34.25 | 32.18 | 88.18 |
| w/o channel | 39.42 | 25.03 | 63.04 | 34.30 | 32.17 | 88.27 |
| 数据集 | 不同聚类簇数时的HR@20/% | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| Last.FM | 63.38 | 63.46 | 63.64 | 63.89 | 63.74 | 63.53 |
| ML | 88.17 | 88.22 | 88.25 | 88.29 | 88.39 | 88.28 |
Tab. 4 Impact of hyperparameter c on HR@20
| 数据集 | 不同聚类簇数时的HR@20/% | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| Last.FM | 63.38 | 63.46 | 63.64 | 63.89 | 63.74 | 63.53 |
| ML | 88.17 | 88.22 | 88.25 | 88.29 | 88.39 | 88.28 |
| 融合方式 | Last.FM | ML | ||
|---|---|---|---|---|
| Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | |
| Concate | 26.97 | 15.73 | 29.96 | 27.02 |
| Average | 34.37 | 21.37 | 28.30 | 26.81 |
| Gated Fusion | 39.69 | 25.36 | 34.46 | 32.28 |
Tab. 5 Performance comparison of different fusion methods
| 融合方式 | Last.FM | ML | ||
|---|---|---|---|---|
| Recall@20 | NDCG@20 | Recall@20 | NDCG@20 | |
| Concate | 26.97 | 15.73 | 29.96 | 27.02 |
| Average | 34.37 | 21.37 | 28.30 | 26.81 |
| Gated Fusion | 39.69 | 25.36 | 34.46 | 32.28 |
| [1] | 赵俊逸,庄福振,敖翔,等.协同过滤推荐系统综述[J].信息安全学报,2021,6(5):17-34. |
| ZHAO J Y, ZHUANG F Z, AO X, et al. Survey of collaborative filtering recommender systems[J]. Journal of Cyber Security, 2021, 6(5): 17-34. | |
| [2] | GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3549-3568. |
| [3] | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. |
| [4] | JIANG Y, YANG Y, XIA L, et al. DiffKG: knowledge graph diffusion model for recommendation[C]// Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York: ACM, 2024: 313-321. |
| [5] | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. |
| [6] | WANG S, YANG L, GONG J, et al. MetaKRec: collaborative meta-knowledge enhanced recommender system[C]// Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2022: 665-674. |
| [7] | ZHU X, DU Y, MAO Y, et al. Knowledge-refined denoising network for robust recommendation[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 362-371. |
| [8] | LU L, WANG B, ZHANG Z, et al. VRKG4Rec: virtual relational knowledge graph for recommendation[C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 526-534. |
| [9] | XIAO H, HUANG M, ZHU X. TransG: a generative mixture model for knowledge graph embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 2316-2325. |
| [10] | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
| [11] | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. |
| [12] | JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 687-696. |
| [13] | XIAO H, HUANG M, HAO Y, et al. TransA: an adaptive approach for knowledge graph embedding[EB/OL]. [2024-04-11]. . |
| [14] | WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. |
| [15] | CHEN H, LI Y, SUN X, et al. Temporal meta-path guided explainable recommendation[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 1056-1064. |
| [16] | ZOU D, WEI W, WANG Z, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 2817-2826. |
| [17] | ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1358-1368. |
| [18] | YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443. |
| [19] | YU J, YIN H, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1294-1303. |
| [20] | CHEN M, HUANG C, XIA L, et al. Heterogeneous graph contrastive learning for recommendation[C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 544-552. |
| [21] | TU K, CUI P, WANG D, et al. Conditional graph attention networks for distilling and refining knowledge graphs in recommendation[C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 1834-1843. |
| [22] | YANG Y, HUANG C, XIA L, et al. Knowledge graph self-supervised rationalization for recommendation[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3046-3056. |
| [23] | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
| [24] | FAN Z, XU K, DONG Z, et al. Graph collaborative signals denoising and augmentation for recommendation[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 2037-2041. |
| [25] | CAI X, HUANG C, XIA L, et al. LightGCL: simple yet effective graph contrastive learning for recommendation[EB/OL]. [2024-01-03]. . |
| [26] | HE W, SUN G, LU J, et al. Candidate-aware graph contrastive learning for recommendation[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1670-1679. |
| [27] | HE X, CHUA T S. Neural factorization machines for sparse predictive analytics[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 355-364. |
| [28] | ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. |
| [29] | ZOU D, WEI W, ZHU F, et al. Knowledge enhanced multi-intent transformer network for recommendation[C]// Companion Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 1-9. |
| [30] | WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887. |
| [1] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [2] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
| [3] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
| [4] | Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays [J]. Journal of Computer Applications, 2025, 45(7): 2369-2377. |
| [5] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
| [6] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
| [7] | Mingfeng YU, Yongbin QIN, Ruizhang HUANG, Yanping CHEN, Chuan LIN. Multi-label text classification method based on contrastive learning enhanced dual-attention mechanism [J]. Journal of Computer Applications, 2025, 45(6): 1732-1740. |
| [8] | Shuang LIU, Daqing LIU, Jiana MENG, Di ZHAO. Hyper-relational knowledge graph completion method fusing noise filtering [J]. Journal of Computer Applications, 2025, 45(6): 1817-1826. |
| [9] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
| [10] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
| [11] | Wenbin HU, Tianxiang CAI, Tianle HAN, Zhaoman ZHONG, Changxia MA. Multimodal sarcasm detection model integrating contrastive learning with sentiment analysis [J]. Journal of Computer Applications, 2025, 45(5): 1432-1438. |
| [12] | Sheping ZHAI, Qing YANG, Yan HUANG, Rui YANG. Knowledge graph completion using hierarchical attention fusing directed relationships and relational paths [J]. Journal of Computer Applications, 2025, 45(4): 1148-1156. |
| [13] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
| [14] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
| [15] | Zixin XU, Xiuwen YI, Jie BAO, Tianrui LI, Junbo ZHANG, Yu ZHENG. Construction and application of knowledge graph for epidemiological investigation [J]. Journal of Computer Applications, 2025, 45(4): 1340-1348. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||