Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3519-3528.DOI: 10.11772/j.issn.1001-9081.2024111665

• Artificial intelligence • Previous Articles    

Recommendation method based on multi-perspective relation-enhanced knowledge graph

Ke GAN, Xiaofei ZHU(), Jiawei CHENG   

  1. College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 401320,China
  • Received:2024-11-27 Revised:2025-04-11 Accepted:2025-04-18 Online:2025-04-22 Published:2025-11-10
  • Contact: Xiaofei ZHU
  • About author:GAN Ke, born in 2000, M. S. candidate. His research interests include natural language processing, knowledge graph recommendation.
    CHENG Jiawei, born in 1999, M. S. candidate. His research interests include natural language processing, emotion recognition.
  • Supported by:
    National Natural Science Foundation of China(62472059);Natural Science Foundation of Chongqing(CSTB2022NSCQ-LZX0002);Chongqing Talent Plan Program(CSTC2024YCJH-BGZXM0022);Major Project of Science and Technology Research Plan of Chongqing Municipal Education Commission(KJZD-M202201102)

基于多视角关系增强知识图谱的推荐方法

甘轲, 朱小飞(), 程佳玮   

  1. 重庆理工大学 计算机科学与工程学院,重庆 401320
  • 通讯作者: 朱小飞
  • 作者简介:甘轲(2000—),男,四川广安人,硕士研究生,主要研究方向:自然语言处理、知识图谱推荐
    程佳玮(1999—),男,江西上饶人,硕士研究生,主要研究方向:自然语言处理、情感识别。
  • 基金资助:
    国家自然科学基金资助项目(62472059);重庆市自然科学基金资助项目(CSTB2022NSCQ-LZX0002);重庆市自然科学基金资助项目(CSTB2022NSCQ-MSX1672);重庆英才计划项目(CSTC2024YCJH-BGZXM0022);重庆市教育委员会科学技术研究计划重大项目(KJZD-M202201102)

Abstract:

Knowledge graph-based recommendation methods learn representations of user and item nodes by integrating relational connections from both item-attribute graph and user-interaction graph to recommend suitable items. However, since knowledge graphs contain both noisy and high-quality relations, the primary challenge lies in circumventing noisy relations while effectively mining valuable relations. Existing methods typically rely on global reconstruction strategies to optimize knowledge graph relations through single manner of pruning noisy relations or mining high-quality relations, thereby learning user and item representations. However, global perspectives struggle to sufficiently capture detailed local information and tend to overlook potential complementarity between local and global information. Furthermore, solely employing pruning or supplementation strategies fail to simultaneously mitigate interference of noisy relations and comprehensively exploit high-quality relations. To address these issues, a Recommendation method based on Multi-Perspective Relation-Enhanced Knowledge Graph (RMPREKG) was proposed. This method alleviated noise impacts in both item-attribute graphs and user?interaction graphs through an item hybrid relation alignment module and an interaction hybrid relation enhancement module, while deeply exploring valuable high-order relations. The item hybrid relation alignment module extracted local and global relations separately via importance pruning strategy and high-order relation mining approach, followed by a knowledge alignment method to synergize both types of information for effectively refining high-quality item auxiliary information. The interaction hybrid relation enhancement module constructed local hybrid pruning relation graph and global hybrid supplementation relation graph, with cross-channel and cross-layer contrastive learning employed to enhance their informational complementarity, thereby comprehensively learning user and item representations. Finally, a hierarchical gated adaptive fusion method was adopted to integrate multiple sets of user and item embeddings for recommendation. When the recommendation length is 20, compared to VRKG4Rec (Virtual Relational Knowledge Graphs for Recommendation), RMPREKG achieves a 10.17% improvement in Normalized Discounted Cumulative Gain (NDCG) on the Last.FM dataset and a 1.13% improvement in NDCG on the MovieLens-1M dataset.

Key words: knowledge graph, multi-perspective, knowledge alignment, contrastive learning, gate fusion

摘要:

基于知识图谱的推荐方法通过结合物品属性图和用户交互图中的关系连接学习用户和物品节点的表示,从而推荐合适的物品;然而,由于知识图谱同时包含噪声关系和优质关系,当前的主要挑战在于如何规避噪声关系并挖掘优质关系。现有方法通常基于全局的重构策略,通过裁剪噪声关系或挖掘优质关系的单一方式优化知识图谱关系,以此学习用户和物品的表示。然而,基于全局视角难以充分捕捉局部信息的细节,并且容易忽略局部信息与全局信息之间的潜在互补性;此外,仅依赖裁剪或增补策略难以同时规避噪声关系的干扰并全面挖掘优质关系。针对上述问题,提出一种基于多视角关系增强知识图谱的推荐方法(RMPREKG)。该方法利用物品混合关系对齐模块和交互混合关系增强模块减少物品属性图和用户交互图中噪声关系的影响,同时深入挖掘优质高阶关系。物品混合关系对齐模块通过重要性裁剪策略和高阶关系挖掘方法分别提取局部与全局关系,并采用一种知识对齐的方法协同两类信息,可有效提炼优质物品辅助信息;交互混合关系增强模块构建了局部混合裁剪关系图和全局混合增补关系图,并通过跨通道和跨层对比学习增强两者之间的信息互补性,从而全面学习用户和物品的表示。最后,采用层级门控自适应的方法融合多组用户与物品嵌入用于推荐。当推荐长度为20时,与VRKG4Rec(Virtual Relational Knowledge Graphs for Recommendation)相比,RMPREKG在Last.FM数据集的归一化折损累计增益(NDCG)提升了10.17%,在MovieLens-1M数据集的NDCG提升了1.13%。

关键词: 知识图谱, 多视角, 知识对齐, 对比学习, 门控融合

CLC Number: