[1] PAN W T. A new fruit fly optimization algorithm:taking the financial distress model as an example[J]. Knowledge Based System,2012, 26(2):69-74. [2] PAN W T. Using modified fruit fly optimization algorithm to perform the function test and case studies[J].Connection Science, 2013, 25(2/3):151-160. [3] CHEN P W, LIN W Y, HUANG T H, et al. Using fruit fly optimization algorithm optimized grey model neural network to perform satisfaction analysis for E-business service[J]. Applied Mathematics & Information Sciences, 2013, 7(2L):459-465. [4] ISCAN H, GUNDUZ M. Parameter analysis on fruit fly optimization algorithm[J]. Journal of Computer & Communications,2016,2(4):137-141. [5] PAN Q K, SANG H Y, DUAN J H, et al. An improved fruit fly optimization algorithm for continuous function optimization problems[J]. Knowledge Based System, 2014,62(5):69-83. [6] 吴小文,李擎.果蝇算法和5种群智能算法的寻优性能研究[J].火力与指挥控制,2013,38(4):17-20.(WU X W, LI Q. Research of optimizing performance of fruit fly optimization algorithm and five kinds of intelligent algorithm[J]. Fire Control & Command Control,2013, 38(4):17-20.) [7] 杨书佺,舒勤,何川.改进的果蝇算法及其在PPI网络中的应用[J].计算机应用与软件,2014,31(12):291-294.(YANG S Q,SHU Q, HE C. A modified fruit fly algorithm and its application in PPI network[J].Computer Applications and Software, 2014,31(12):291-294.) [8] 宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报(理工版),2014,31(4):367-373.(NING J P, WANG B, LI H R, et al. Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University (Science and Engineering), 2014,31(4):367-373.) [9] 韩俊英,刘成忠.自适应调整参数的果蝇优化算法[J].计算机工程与应用,2014,50(7):50-55.(HAN J Y, LIU C Z. Fruit fly optimization algorithm with adaptive parameter[J]. Computer Engineering and Applications, 2014, 50(7):50-55.) [10] 曹磊,叶春明,包晓晓.改进果蝇算法求解带有学习效应的PFSP[J].数学理论与应用,2015,35(1):103-114.(CAO L,YE C M, BAO X X. An improved fruit optimization fly algorithm for solving the permutation flow-shop scheduling problem with learning effects[J]. Mathematical Theory and Applications, 2015,35(1):103-114.) [11] 蒋龙聪,刘江平.模拟退火算法及其改进[J].工程地球物理学报,2007,4(2):135-139.(JIANG L C, LIU J P. Revised simulated annealing algorithm[J]. Chinese Journal of Engineering Geophysics, 2007,4(2):135-139.) [12] DOWSLAND K A, THOMPSON J M. Simulated annealing[J].Handbook of Natural Computing, 2012,43(1):1623-1655. [13] 博文渊,凌朝东.布朗运动模拟退火算法[J].计算机学报,2014,37(6):1031-1037.(BO W Y, LING C D. Brownian motion based simulated annealing algorithm[J].Chinese Journal of Computers, 2014, 37(6):1031-1037.) [14] 韩俊英,刘成忠.自适应混沌果蝇优化算法[J].计算机应用,2013,33(5):1313-1316.(HAN J Y, LIU C D. Adaptive chaos fruit fly optimization algorithm[J].Journal of Computer Applications, 2013,33(5):1313-1316.) [15] 林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183.(LIN C, FENG Q Y. New adaptive particle swarm optimization algorithm[J].Computer Engineering,2008,34(7):181-183.) [16] 王联国,洪毅,施秋红.全局版人工鱼群算法[J].系统仿学报,2009,21(23):7483-7486.(WANG L G, HONG Y, SHI Q H. Global edition artificial fish swarm algorithm[J].Journal of System Simulation, 2009,21(23):7483-7486.) |