[1] ALDENDERFER M S, BLASHFIELD R K. Cluster Analysis[M]. Los Angeles:Sage Publications, 1984:2-12.
[2] AGGARWAL C C, REDDY C K. Data Clustering:Algorithms and Applications[M]. London:Taylor and Francis Group, 2014:4-7.
[3] EVERITT B, LANDAU S, LEESE M. Cluster Analysis[M]. 4th ed. London:Arnold, 2001:144-201.
[4] BARALDI A, ALPAYDIN E. Constructive feedforward ART clustering networks-Part I and Ⅱ[J]. IEEE Transactions on Neural Networks, 2002, 13(3):645-677.
[5] JAIN A K, MURTY M N, FLYNN P J. Data clustering:a review[J]. ACM Computing Surveys, 1999,31(3):264-323.
[6] HANSEN P, JAUMARD B. Cluster analysis and mathematical programming[J]. Mathematical Programming, 1997, 79:191-215.
[7] 章永来.基于聚类的社区居民健康指数预测模型研究[D].北京:中国科学院大学,2015.(ZHANG Y L. Research on prediction model of health index for community residents based on clustering[D]. Beijing:University of Chinese Academy of Sciences, 2015.)
[8] ZHOU X, ZHANG Y, SHI M, et al. Early detection of liver disease using data visualisation and classification method[J]. Biomedical Signal Processing and Control, 2014, 11:27-35.
[9] ZHANG Y, ZHOU X, SHI H, et al. Corrosion pitting damage detection of rolling bearings using data mining techniques[J]. International Journal of Modeling, Identification and Control, 2015, 24(3):235-243.
[10] ZHOU Y, YU J, WANG X. Time series prediction methods for depth-averaged current velocities of underwater gliders[J]. IEEE Access, 2017, 5:5773-5784.
[11] 章永来,史海波,尚文利,等.面向乳腺癌辅助诊断的改进支持向量机方法[J].计算机应用研究,2013,30(8):2373-2376.(ZHANG Y L, SHI H B, SHANG W L, et al. Improved method for computer-aided diagnosis of breast cancer based on support vector machines[J]. Application Research of Computers, 2013, 30(8):2373-2376.)
[12] KLEINBERG J. An impossibility theorem for clustering[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2002:463-470.
[13] DUDA R O, HART P E, STORK D G. Pattern Classification[M]. 2nd ed. New York:John Wiley and Sons, 2001:47-56.
[14] GAO J, WANG Y, LI J. Bounds on covering radius of linear codes with Chinese Euclidean distance over the finite non chain ring F-2+vF(2)[J]. Information Processing Letters, 2018, 138:22-26.
[15] HOGG R, TANIS E. Probability and Statistical Inference[M]. 7th ed. Upper Saddle River:Prentice Hall, 2005:120-145.
[16] BOBROWSKIL, BEZDEK J C. C-means clustering with the L1 and L∞ norms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3):545-554.
[17] ANTER A, HASSENIAN A E, OLIVA D. An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural[J]. Expert Systems with Applications, 2019, 118:340-354.
[18] MAO J, JAIN A K. A self-organizing network for HyperEllipsoidal Clustering (HEC)[J]. IEEE Transactions on Neural Networks, 1996, 7(1):16-29.
[19] ZHAN J, WANG R, YI L. Health assessment methods for wind turbines based on power prediction and Mahalanobis distance[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(2):1951001.
[20] KAUFMAN L, ROUSSEEUW P J. Finding Groups in Data:An Introduction to Cluster Analysis[M]. New York:John Wiley and Sons, 2009:82-85.
[21] XU R, DONALD C W. Clustering[M]. New York:John Wiley and Sons, 2009:12-95.
[22] FORGY E W. Cluster analysis of multivariate data:efficiency vs. interpretability of classification[J]. International Journal of Environmental Studies, 1965, 21(3):41-52.
[23] ANTOINE G B, CATHY M R, ANDREA R. Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data[J]. Journal of Applied Statistics, 2019, 46(1):47-65.
[24] HATHAWAY R J, BEZDEK J C, HU Y. Generalized fuzzy c-means clustering strategies using LP norm distances[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5):576-582.
[25] 耿宗科,王长宾,张振国.基于模糊c-means与自适应粒子群优化的模糊聚类算法[J].计算机科学,2016,43(8):267-272.(GENG Z K, WANG C B, ZHANG Z G. Fuzzy c-means and adaptive PSO based fuzzy clustering algorithm[J]. Computer Science, 2016, 43(8):267-272.)
[26] CARPENTER G A, GROSSBERG S, ROSEN D B. Fuzzy ART:fast stable learning and categorization of analog patterns by an adaptive resonance system[J]. Neural Networks, 1991, 4(6):759-771.
[27] CHANDRAPRABHA K, GEETHA B G. Wireless network confidence level improvement via fusion adaptive resonance theory[J]. Cluster Computing, 2018(2):1-11.
[28] ANAGNOSTOPOULOS G C, GEORGIOPOULOS M. Ellipsoid ART and ARTMAP for incremental unsupervised and supervised learning[C]//Proceedings of the 2001 International Society of Optical Engineering. Bellingham:SPIE Publications, 2001:1-6.
[29] MOSHTAGHI M, RAJASEGARAR S, LECKIE C, et al. An efficient hyperellipsoidal clustering algorithm for resource-constrained environments[J]. Pattern Recognition, 2011, 44(9):2197-2209.
[30] SU M C, CHOU C H. A modified version of the K-Means algorithm with a distance based on cluster symmetry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):674-680.
[31] EISEN M B, SPELLMAN P T, BROWN P O, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25):14863-14868.
[32] STEINBACH M, KARYPIS G, KUMAR V. A Comparison of Document Clustering Techniques[M]. New York:John Wiley and Sons, 2000:50-56.
[33] GERSHO A, GRAY R M.Vector quantization and signal compression[J]. Springer International, 1992, 159(1):407-485.
[34] ABDEL-GHAFFAR K A S. Sets of binary sequences with small total Hamming distances[J]. Information Processing Letters, 2019,142:27-29.
[35] GETZ G, LEVINE E, DOMANY E. Coupled two-way clustering analysis of gene microarray data[J]. Proceedings of the National Academy of Sciences, 2000, 97(22):12079-12084.
[36] EVERITT B, HOTHORN T. Cluster Analysis[M]. New York:John Wiley and Sons, 2011:111-134.
[37] CHEN J Y, HE H H. A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data[J]. Information Sciences, 2016, 345:271-293.
[38] SHIRKHORSHIDI A S, AGHABOZORGI S, WAH T Y, et al. Big data clustering:a review[C]//Proceedings of the 14th International Conference on Computational Science and Its Applications. Berlin:Springer, 2014:707-720.
[39] KALYANI P. Approaches to partition medical data using clustering algorithms[J]. International Journal of Computer Applications, 2013, 49(23):7-10.
[40] LIU G. Introduction to Combinatorial Mathematics[M]. New York:McGraw Hill, 1968:12-16.
[41] KRISHNA K, MURTY M N. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics:Part B,1999, 29(3):433-439.
[42] LU Y, LU S, FOTOUHI F. FGKA:a fast genetic K-means clustering algorithm[C]//Proceedings of the 2004 ACM Symposium on Applied Computing. New York:ACM, 2004:622-623.
[43] BRADLEY P, FAYYAD U. Refining initial points for K-means clustering[C]//Proceedings of the 15th International Conference on Machine Learning. New York:ACM, 1998:91-99.
[44] PELLEG D, MOORE A. X-means:extending K-means with efficient estimation of the number of the clusters[C]//Proceedings of the 17th International Conference on Machine Learning. New York:ACM, 2000:111-117.
[45] BERKHIN P, BECHER J. Learning simple relations:theory and applications[C]//Proceedings of the 2nd International Conference on Data Mining, Washington, DC:IEEE Computer Society, 2002:333-349.
[46] NGUYEN H H. Privacy-preserving mechanisms for K-modes clustering[J]. Computers and Security, 2018, 78:60-75.
[47] LACKO D, HUYSMANST, VLEUGELS J, et al. Product sizing with 3D anthropometry and k-medoids clustering[J]. Computer-Aided Design, 2017, 91:60-74.
[48] NAKAGAWA K, IMAMURA M, YOSHIDA K. Stock price prediction using k-medoids clustering with indexing dynamic time warping[J]. Electronics and Communications in Japan, 2019,102(2):3-8.
[49] FRALEY C, RAFTERY A. Model-based clustering, discriminant analysis, and density estimation[J]. Journal of the American Statistical Association, 2002, 97:611-631.
[50] McLACHLAN G, KRISHNAN T. The EM Algorithm and Extensions[M]. New York:John Wiley and Sons, 1997:6-9.
[51] ZHOU Y, XU S, JIN C, et al. Multiple point sets registration based on expectation maximization algorithm[J]. Computers and Electrical Engineering, 2018, 70:1-11.
[52] BEN-DOR A, SHAMIR R, YAKHINI Z. Clustering gene expression patterns[J]. Journal of Computational Biology, 1999, 6:281-297.
[53] SHARAN R, SHAMIR R. CLICK:A clustering algorithm with applications to gene expression analysis[C]//Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology. San Diego:[s.n.], 2000:307-316.
[54] NGUYEN M N, SIM A Y L, WAN Y, et al. Topology independent comparison of RNA 3D structures using the CLICK algorithm[J]. Nucleic Acids Research, 2017, 45(1):e5.
[55] DING C F, LI K. Centrality ranking in multiplex networks using topologically biased random walks[J]. Neuro-computing, 2018, 312:263-275.
[56] SHANG R, ZHANG Z, JIAO L, et al. Global discriminative-based nonnegative spectral clustering[J]. Pattern Recognition, 2016, 55:172-182.
[57] 宋健,许国艳,夭荣朋.基于差分隐私的数据匿名化隐私保护方法[J].计算机应用,2016,36(10):2753-2757.(SONG J, XU G Y, YAO R P. Spectral clustering algorithm based on differential privacy protection[J]. Journal of Computer Applications, 2016, 36(10):2753-2757.)
[58] LEE C-H, ZAIANE O R, PARK H-H, et al. Clustering high dimensional data:a graph-based relaxed optimization approach[J]. Information Sciences, 2008, 178(23):4501-4511.
[59] SHI D, WANG J, CHENG D, et al. A global-local affinity matrix model via EigenGap for graph-based subspace clustering[J]. Pattern Recognition Letters, 2017, 89:67-72.
[60] BEZDEK J. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York:Plenum Press, 1981:37-89.
[61] HATHAWAY R, BEZDEK J. Fuzzy c-means clustering of incomplete data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2001, 31(5):735-744.
[62] ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. New York:AAAI Press,1996:56-69.
[63] BIRANT D, KUT A. ST-DBSCAN:an algorithm for clustering spatial-temporal data[J]. Data and Knowledge Engineering, 2007, 60(1):208-221.
[64] TRISMININGSIH R, SHAZTIKA S S. ST-DBSCAN clustering module in SpagoBI for hotspots distribution in Indonesia[C]//Proceedings of the 3rd International Conference on Information Technology. New York:ACM, 2017:60-67.
[65] ANKERST M, BREUNIG M, KRIEGEL H, et al. OPTICS:ordering points to identify the clustering structure[C]//Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data. New York:ACM, 1999:49-60.
[66] HINNEBURG A, KEIM D. An efficient approach to clustering in large multimedia databases with noise[C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York:ACM, 1998:58-65.
[67] WANG W, YANG J, MUNTZ R. STING:a statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd Conference on Very Large Data Bases. New York:ACM, 1997:186-195.
[68] SHEIKHOIESIAMI G, CHATTERJEE S, ZHANG A. WaveCluster:a multi-resolution clustering approach for very large spatial databases[C]//Proceedings of the 24th Conference on Very Large Data Bases. New York:ACM, 1998:428-439.
[69] YILDIRIM A A, WATSON D. A comparative study of the parallel wavelet-based clustering algorithm on three-dimensional dataset[J]. Journal of Supercomputing, 2015, 71(7):2365-2380.
[70] SHAO J, HE X, BOHM C, et al. Synchronization-inspired partitioning and hierarchical clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4):893-905.
[71] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814):972-976.
[72] 刘晓楠,尹美娟,李明涛,等.面向大规模数据的分层近邻传播聚类算法[J].计算机科学,2014,41(3):185-188.(LIU X N, YIN M J, LI M T, et al. Hierarchical affinity propagation clustering for large-scale data set[J]. Computer Science, 2014, 41(3):185-188.)
[73] AKASH O M, AZMI M S B. A new similarity measure based affinity propagation for data clustering[J]. Advanced Science Letters, 2018, 24(2):1130-1133.
[74] ZHAO J L, QU H, ZHAO J H. Towards controller placement problem for software-defined network using affinity propagation[J]. Electronics Letters, 2017, 53(14):928-929.
[75] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[76] XIAO X, DING S, SUN T. A fast density peaks clustering algorithm based on pre-screening[C]//Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing. Piscataway, NJ:IEEE, 2018:456-462.
[77] GHOSH S, MITRA S. Clustering large data with uncertainty[J]. Applied Soft Computing, 2013, 13(4):1639-1645.
[78] LE H S, NGUYEN D T. Tune up fuzzy c-means for big data:some novel hybrid clustering algorithms based on initial selection and incremental clustering[J]. International Journal of Fuzzy Systems,2017, 19(5):1585-1602.
[79] LIU A, SU Y, NIE W, et al. Hierarchical clustering multi-task learning for joint human action grouping and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1):102-114.
[80] MADAN S, DANA K J. Modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) for visual clustering[J]. Pattern Analysis and Applications, 2016, 19(4):1023-1040.
[81] GUHA S, RASTOGI R, SHIM K, et al. CURE:an efficient clustering algorithm for large databases[J]. Information Systems, 1998, 26(1):35-58.
[82] GUHA S, RASTOGI R, SHIM K. ROCK:a robust clustering algorithm for categorical attributes[J]. Information Systems, 1999, 25(5):345-366.
[83] GELBARD R, GOLDMAN O, SPIEGLER I. Investigating diversity of clustering methods:an empirical comparison[J]. Data and Knowledge Engineering, 2007, 63(1):155-166.
[84] BARALDI A, BLONDA P. A survey of fuzzy clustering algorithms for pattern recognition-Part I and Ⅱ[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 1999, 29(6):778-801.
[85] ALAHAKOON D, HALGAMUGE S K, SRINIVASAN B. Dynamic self-organizing maps with controlled growth for knowledge discovery[J]. IEEE Transactions on Neural Networks, 2000, 11(3):601-614.
[86] YIN H. VISOM:a novel method for multivariate data projection and structure[J]. IEEE Transactions on Neural Networks, 2002, 13(1):237-243.
[87] CAO Y, WU J. Dynamics of projective adaptive resonance theory model:the foundation of PART algorithm[J]. IEEE Transactions on Neural Network, 2004, 15(2):245-260.
[88] ZHANG Y, LU J, LIU F. Does deep learning help topic extraction? a kernel k-means clustering method with word embedding[J]. Journal of Informetrics, 2018, 12(4):1099-1117.
[89] HAN J, TAO J, WANG C. FlowNet:a deep learning framework for clustering and selection of streamlines and stream surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 11:678-689.
[90] ZHAO Z, BARIJOUGH K, GERSTLAUSER A. DeepThings:distributed adaptive deep learning inference on resource-constrained IoT edge clusters[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(11):2348-2359.
[91] CORTES C, VAPNIK V. Support vector networks[J]. Machine Learning, 1995, 20:273-297.
[92] SCHÖLKOPF B, BURGES C, VAPNIK V. Incorporating invariances in support vector learning machines[C]//Proceedings of the 1996 International Conference on Artificial Neural Networks. Berlin:Springer, 1996:47-52.
[93] TAX D M J, DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11):1191-1199.
[94] BEN-HUR A, HORN D, SIEGELMANN H T, et al. A support vector clustering method[C]//Proceedings of the 2000 International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2000:2724-2727.
[95] BEN-HUR A, HORN D, SIEGELMANN H T, et al. Support vector clustering[J]. Journal Machine Learning Research, 2001, 2:125-137.
[96] WANG D, YEUNG D S, TSANG T C C. Structured one-class classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 36(6):1283-1295.
[97] RAJASEGARAR S, LECKIE C, BEZDEK J C. Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3):518-533.
[98] AMAMI R, SMITI A. An incremental method combining density clustering and support vector machines for voice pathology detection[J]. Computers and Electrical Engineering, 2017, 57:257-265.
[99] 李海林,梁叶.基于中心度的标签传播时间序列聚类方法[J].控制与决策,2018,33(11):33-41.(LI H L, LIANG Y. Time series clustering method with label propagation based on centrality[J]. Control and Decision, 2018, 33(11):33-41.)
[100] 熊英志.时间序列的特征表示与聚类方法研究[D].镇江:江苏大学,2018:36-61.(XIONG Y Z. Research on feature representation and clustering algorithm for time series[D]. Zhengjiang:Jiangsu University, 2018:36-61.)
[101] JONES R H. Longitudinal data with serial correlation:a state space approach[J]. Journal of the Royal Statistical Society, 1994, 36(2):231-239.
[102] GAFFNEY S, SMYTH P. Trajectory clustering with mixtures of regression models[C]//Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining. New York:ACM, 1999:63-72.
[103] DU F, ZHU A, QI F. Interactive visual cluster detection in large geospatial datasets based on dynamic density volume visualization[J]. Geocarto International, 2016, 31(6):597-611.
[104] HU A, CAO J, HU M, et al. Distributed control of cluster synchronisation in networks with randomly occurring non-linearities[J]. International Journal of Systems Science, 2015, 65(4):1-10.
[105] GONG M, CAI Q, CHEN X, et al. Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(1):82-97.
[106] GUIMERA R, AMARAL L A N. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028):895-900.
[107] 杨博,刘大有, LIU J-M,等.复杂网络聚类方法[J].软件学报,2009,20(1):54-66.(YANG B, LIU D Y, LIU J-M, et al. Complex network clustering algorithms[J]. Journal of Software, 2009, 20(1):54-66.)
[108] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Science, 2002, 99(12):7821-7826.
[109] 郭玉泉,李雄飞.复杂网络社区的分形聚类检测方法[J].吉林大学学报(工学版),2016,46(5):1633-1638.(GUO Y Q, LI X F. Fractal clustering method for uncovering community of complex network[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5):1633-1638.)
[110] 赵凤,刘汉强,范九伦.基于互补空间信息的多目标进化聚类图像分割[J].电子与信息学报,2015,37(3):672-678.(ZHAO F, LIU H Q, FAN J L. Multi-objective evolutionary clustering with complementary spatial information for image segmentation[J]. Journal of Electronics and Information Technology, 2015, 37(3):672-678.)
[111] 张引,潘云鹤.基于模拟退火的最大似然聚类图像分割算法[J].软件学报,2001,12(2):212-218.(ZHANG Y, PAN Y H. Simulated annealing based maximum likelihood clustering algorithm for image segmentation[J]. Journal of Software, 2001, 12(2):212-218.)
[112] GLOVER F. Tabu search, Part I[J]. ORSA Journal of Computing, 1989, 1(3):190-206.
[113] BOUYER A, HATAMLOU A. An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms[J]. Applied Soft Computing, 2018, 67:172-182.
[114] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
[115] 李麟玮,吴益平,苗发盛.基于灰狼支持向量机的非等时距滑坡位移预测[J].浙江大学学报(工学版),2018,52(10):167-175.(LI L W, WU Y P, MIAO F S. Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10):167-175.)
[116] DENG C, LIU Y, XU L, et al. A MapReduce-based parallel K-means clustering for large-scale CIM data verification[J]. Concurrency and Computation Practice and Experience, 2016, 28(11):3096-3114.
[117] HE Y, TAN H, LUO W, et al. MR-DBSCAN:a scalable MapReduce-based DBSCAN algorithm for heavily skewed data[J]. Frontiers of Computer Science, 2014, 8(1):83-99.
[118] LI J, CHEN Q, LIU B. Classification and disease probability prediction via machine learning programming based on multi-GPU cluster MapReduce system[J]. Journal of Supercomputing, 2017, 73(5):1782-1809.
[119] LU Y, CAO B, REGO C. A tabu search based clustering algorithm and its parallel implementation on Spark[J]. Applied Soft Computing, 2018, 63:97-109.
[120] ZHOU A, WANG H, SONG P. Experiments on light vertex matching algorithm for multilevel partitioning of network topology[J]. Procedia Engineering, 2012, 29:2715-2720.
[121] ANDRADE G, RAMOS G, MADEIRA D, et al. G-DBSCAN:a GPU accelerated algorithm for density-based clustering[J]. Procedia Computer Science, 2013, 18(1):369-378.
[122] MELO D, TOLEDO S, MOURÃO F, et al. Hierarchical density-based clustering based on GPU accelerated data indexing strategy[J]. Procedia Computer Science, 2016, 80:951-961.
[123] PARSONS L, HAQUE E, LIU H. Subspace clustering for high dimensional data:a review[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1):90-105.
[124] YIN M, XIE S, WU Z, et al. Subspace clustering via learning an adaptive low-rank graph.[J]. IEEE Transactions on Image Processing, 2018, 27(8):3716-3728.
[125] AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York:ACM, 1998:94-105.
[126] CHENG C H, FU A W, ZHANG Y. Entropy-based subspace clustering for mining numerical data[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 1999:84-93
[127] GOIL S, NAGESH H, CHOUDHARY A. MAFIA:efficient and scalable subspace clustering for very large data sets[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 1999:443-452.
[128] AGGARWAL C C, YU P S. Finding generalized projected clusters in high dimensional spaces[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2000:70-81.
[129] WOO K G, LEE J H, KIM M H, et al. FINDIT:a fast and intelligent subspace clustering algorithm using dimension voting[J]. Information and Software Technology, 2004, 46(4):255-271.
[130] SIM K, GOPALKRISHNAN V, ZIMEK A, et al. A survey on enhanced subspace clustering[J]. Data Mining and Knowledge Discovery, 2013, 26(2):332-397.
[131] BOUGUILA N. A model-based approach for discrete data clustering and feature weighting using MAP and stochastic complexity[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12):1649-1664.
[132] CHEN L, WANG S, WANG K, et al. Soft subspace clustering of categorical data with probabilistic distance[J]. Pattern Recognition, 2016, 51(C):322-332.
[133] DENG Z, CHOI K-S, WANG J, et al. A survey on soft subspace clustering[J]. Information Sciences, 2014, 348:84-106.
[134] CHENG Y, CHURCH G M. Biclustering of expression data[C]//Proceedings of the 2000 International Conference of Intelligent Systems for Molecular Biology. New York:ACM, 2000:93-103.
[135] HALKIDI M, BATISTAKIS Y, VAZIRGIANNIS M. Cluster validity methods[C]//Proceedings of the 2002 International Conference on Special Interest Group on Management of Data. New York:ACM, 2002:127-131.
[136] THEODORIDIS S, KOUTROUMBAS K. Pattern Recognition[M]. 3rd ed. San Diego:Academic Press, 2006:56-63.
[137] JOSÉ-GARCÍA A, GÍMEZ-FLORES W. Automatic clustering using nature-inspired metaheuristics:a survey[J]. Applied Soft Computing, 2015, 41:192-213.
[138] LIAN C, RUAN S, DENOEUX T, et al. Joint tumor segmentation in PET-CT images using co-clustering and fusion based on belief functions[J]. IEEE Transactions on Image Processing, 2019, 28(2):755-766. |