Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3395-3403.DOI: 10.11772/j.issn.1001-9081.2021122109
Special Issue: 第九届CCF大数据学术会议(CCF Bigdata 2021)
• CCF Bigdata 2021 • Previous Articles Next Articles
Bing SHI1, Xizi HUANG1, Zhaoxiang SONG1, Jianqiao XU2()
Received:
2021-12-15
Revised:
2022-01-18
Accepted:
2022-01-24
Online:
2022-11-14
Published:
2022-11-10
Contact:
Jianqiao XU
About author:
SHI Bing, born in 1982, Ph. D., professor. His research interests include artificial intelligence, multi‑agent systems.Supported by:
通讯作者:
徐建桥
作者简介:
石兵(1982—),男,江苏泰兴人,教授,博士,CCF会员,主要研究方向:人工智能、多智能体系统基金资助:
CLC Number:
Bing SHI, Xizi HUANG, Zhaoxiang SONG, Jianqiao XU. User incentive based bike‑sharing dispatching strategy[J]. Journal of Computer Applications, 2022, 42(11): 3395-3403.
石兵, 黄茜子, 宋兆翔, 徐建桥. 基于用户激励的共享单车调度策略[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3395-3403.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122109
符号 | 描述 |
---|---|
表示将区域划分互为不交叉重叠的 | |
表示将时间分为 | |
在 | |
表示在 | |
表示用户 | |
表示用户 | |
表示用户 | |
表示用户 | |
表示用户 | |
表示用户激励下的调度策略中的预算限制 |
Tab. 1 Symbol definition
符号 | 描述 |
---|---|
表示将区域划分互为不交叉重叠的 | |
表示将时间分为 | |
在 | |
表示在 | |
表示用户 | |
表示用户 | |
表示用户 | |
表示用户 | |
表示用户 | |
表示用户激励下的调度策略中的预算限制 |
参数 | 描述 |
---|---|
区域划分数量 | 5×5 |
用户最大步行距离 | 均值为单个网格区域长度的正态分布 |
用户步行成本参数 | 1 |
总时间段数 | 78 |
时间间隔 | 10 min |
301 | |
1,其中 |
Tab. 2 Experimental parameters
参数 | 描述 |
---|---|
区域划分数量 | 5×5 |
用户最大步行距离 | 均值为单个网格区域长度的正态分布 |
用户步行成本参数 | 1 |
总时间段数 | 78 |
时间间隔 | 10 min |
301 | |
1,其中 |
1 | DEMAIO P. Bike‑sharing: history, impacts, models of provision, and future[J]. Journal of Public Transportation, 2009, 12(4): 41-56. 10.5038/2375-0901.12.4.3 |
2 | 李琨浩. 基于共享经济视角下城市共享单车发展对策研究[J]. 城市, 2017(3): 66-69. 10.3969/j.issn.1005-278X.2017.03.012 |
LI K H. Research on the development countermeasures of city shared bicycles from the perspective of sharing economy[J]. City, 2017(3): 66-69. 10.3969/j.issn.1005-278X.2017.03.012 | |
3 | 王怡苏.“共享经济”在中国的发展现状和模式的研究——以共享单车为例[J]. 当代经济, 2017(17): 140-141. 10.3969/j.issn.1007-9378.2017.17.061 |
WANG Y S. Research on development status and model of “sharing economy” in China ― taking shared bicycle as an example[J]. Contemporary Economics, 2017(17): 140-141. 10.3969/j.issn.1007-9378.2017.17.061 | |
4 | PFROMMER J, WARRINGTON J, SCHILDBACH G, et al. Dynamic vehicle redistribution and online price incentives in shared mobility systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1567-1578. 10.1109/tits.2014.2303986 |
5 | SHAHEEN S A, GUZMAN S, ZHANG H. Bikesharing in Europe, the Americas, and Asia: past, present, and future[J]. Transportation Research Record, 2010, 2143(1): 159-167. 10.3141/2143-20 |
6 | 吴垚,曾菊儒,彭辉,等. 群智感知激励机制研究综述[J]. 软件学报, 2016, 27(8): 2025-2047. 10.13328/j.cnki.jos.005049 |
WU Y, ZENG J R, PENG H, et al. Survey on incentive mechanisms for crowd sensing[J]. Journal of Software, 2016, 27(8): 2025-2047. 10.13328/j.cnki.jos.005049 | |
7 | 童咏昕,袁野,成雨蓉,等. 时空众包数据管理技术研究综述[J]. 软件学报, 2017, 28(1): 35-58. |
TONG Y X, YUAN Y, CHENG Y R, et al. Survey on spatiotemporal crowdsourced data management techniques[J]. Journal of Software, 2017, 28(1): 35-58. | |
8 | TONG Y X, SHE J Y, DING B L, et al. Online minimum matching in real‑time spatial data: experiments and analysis[J]. Proceedings of the VLDB Endowment, 2016, 9(12): 1053-1064. 10.14778/2994509.2994523 |
9 | 徐毅,童咏昕,李未. 大规模拼车算法研究进展[J]. 计算机研究与发展, 2020, 57(1): 32-52. 10.7544/issn1000-1239.2020.20190239 |
XU Y, TONG Y X, LI W. Recent progress in large‑scale ridesharing algorithms[J]. Journal of Computer Research and Development, 2020, 57(1): 32-52. 10.7544/issn1000-1239.2020.20190239 | |
10 | AESCHBACH P, ZHANG X J, GEORGHIOU A, et al. Balancing bike sharing systems through customer cooperation ― a case study on London’s Barclays Cycle Hire[C]// Proceeding of the 54th IEEE Conference on Decision and Control. Piscataway: IEEE, 2015: 4722-4727. 10.1109/cdc.2015.7402955 |
11 | FRICKER C, GAST N. Incentives and redistribution in homogeneous bike‑sharing systems with stations of finite capacity[J]. EURO Journal on Transportation and Logistics, 2016, 5(3): 261-291. 10.1007/s13676-014-0053-5 |
12 | CAGGIANI L, CAMPOREALE R, MARINELLI M, et al. User satisfaction based model for resource allocation in bike‑sharing systems[J]. Transport Policy, 2019, 80: 117-126. 10.1016/j.tranpol.2018.03.003 |
13 | TONG Y X, ZENG Y X, DING B L, et al. Two‑sided online micro‑task assignment in spatial crowdsourcing[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(5): 2295-2309. |
14 | LI K Y, LI G L, WANG Y, et al. CrowdRL: an end‑to‑end reinforcement learning framework for data labelling[C]// Proceeding of the IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 289-300. 10.1109/icde51399.2021.00032 |
15 | CHENG H, WED S Y, ZHANG L Y, et al. Engaging drivers in ride hailing via competition: a case study with arena[C]// Proceeding of the 22nd IEEE International Conference on Mobile Data Management. Piscataway: IEEE, 2021: 19-28. 10.1109/mdm52706.2021.00016 |
16 | YANG H, QIN X R, KE J T, et al. Optimizing matching time interval and matching radius in on‑demand ride‑sourcing markets[J]. Transportation Research Part B: Methodological, 2020, 131: 84-105. 10.1016/j.trb.2019.11.005 |
17 | ZHAO Y, ZHENG K, CUI Y, et al. Predictive task assignment in spatial crowdsourcing: a data‑driven approach[C]// Proceeding of the IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 13-24. 10.1109/icde48307.2020.00009 |
18 | BAN S, HYUN K H. Designing a user participation‑based bike rebalancing service[J]. Sustainability, 2019, 11(8): No.2396. 10.3390/su11082396 |
19 | LI L F, SHAN M Y. Bidirectional incentive model for bicycle redistribution of a bicycle sharing system during rush hour[J]. Sustainability, 2016, 8(12): No.1299. 10.3390/su8121299 |
20 | REISS S, BOGENBERGER K. A relocation strategy for Munich’s bike sharing system: combining an operator‑based and a user‑based scheme[J]. Transportation Research Procedia, 2017, 22: 105-114. 10.1016/j.trpro.2017.03.016 |
21 | HUANG J J. CHOU M C, TEO C P. Bike‑repositioning using volunteers: crowd sourcing with choice restriction[C]// Proceeding of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 11844-11852. 10.1609/aaai.v35i13.17407 |
22 | PAN L, CAI Q P, FANG Z X, et al. A deep reinforcement learning framework for rebalancing dockless bike sharing systems[C]// Proceeding of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 1393-1400. 10.1609/aaai.v33i01.33011393 |
23 | DUAN Y B, WU J. Optimizing rebalance scheme for dock‑less bike sharing systems with adaptive user incentive[C]// Proceeding of the 20th IEEE International Conference on Mobile Data Management. Piscataway: IEEE, 2019: 176-181. 10.1109/mdm.2019.00-59 |
24 | SINGLA A, SANTONI M, BARTÓK G, et al. Incentivizing users for balancing bike sharing systems[C]// Proceeding of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 723-729. 10.1609/aaai.v29i1.9251 |
25 | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Proceeding of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3104-3112. |
26 | DONG C J, XIONG Z H, SHAO C F, et al. A spatial‑temporal‑ based state space approach for freeway network traffic flow modelling and prediction[J]. Transportmetrica A: Transport Science, 2015, 11(7): 547-560. 10.1080/23249935.2015.1030003 |
27 | YAO H X, TANG X F, WEI H, et al. Revisiting spatial‑temporal similarity: a deep learning framework for traffic prediction[C]// Proceeding of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5668-5675. 10.1609/aaai.v33i01.33015668 |
28 | 杜圣东,李天瑞,杨燕,等. 一种基于序列到序列时空注意力学习的交通流预测模型[J]. 计算机研究与发展, 2020, 57(8): 1715-1728. 10.7544/issn1000-1239.2020.20200169 |
DU S D, LI T R, YANG Y, et al. A sequence‑to‑ sequence spatial‑temporal attention learning model for urban traffic flow prediction[J]. Journal of Computer Research and Development, 2020, 57(8): 1715-1728. 10.7544/issn1000-1239.2020.20200169 | |
29 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL].(2019-07-05) [2021-09-23].. |
30 | SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]// Proceeding of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 387-395. |
31 | 余显,李振宇,孙胜,等. 基于深度强化学习的自适应虚拟机整合方法[J]. 计算机研究与发展, 2021, 58(12): 2783-2797. 10.7544/issn1000-1239.2021.20200366 |
YU X, LI Z Y, SUN S, et al. Adaptive virtual machine consolidation method based on deep reinforcement learning[J]. Journal of Computer Research and Development, 2021, 58(12): 2783-2797. 10.7544/issn1000-1239.2021.20200366 | |
32 | 卢海峰, 顾春华, 罗飞,等. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. 10.7544/issn1000-1239.2020.20190291 |
LU H F, GU C H, LUO F, et al. Research on task offloading based on deep reinforcement learning in mobile edge computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. 10.7544/issn1000-1239.2020.20190291 |
[1] | Yi ZHOU, Hua GAO, Yongshen TIAN. Proximal policy optimization algorithm based on clipping optimization and policy guidance [J]. Journal of Computer Applications, 2024, 44(8): 2334-2341. |
[2] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[3] | Tian MA, Runtao XI, Jiahao LYU, Yijie ZENG, Jiayi YANG, Jiehui ZHANG. Mobile robot 3D space path planning method based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(7): 2055-2064. |
[4] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[5] | Rui TANG, Chuanlin PANG, Ruizhi ZHANG, Chuan LIU, Shibo YUE. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. |
[6] | Xintong QIN, Zhengyu SONG, Tianwei HOU, Feiyue WANG, Xin SUN, Wei LI. Channel access and resource allocation algorithm for adaptive p-persistent mobile ad hoc network [J]. Journal of Computer Applications, 2024, 44(3): 863-868. |
[7] | Yuanchao LI, Chongben TAO, Chen WANG. Gait control method based on maximum entropy deep reinforcement learning for biped robot [J]. Journal of Computer Applications, 2024, 44(2): 445-451. |
[8] | Fuqin DENG, Huifeng GUAN, Chaoen TAN, Lanhui FU, Hongmin WANG, Tinlun LAM, Jianmin ZHANG. Multi-robot reinforcement learning path planning method based on request-response communication mechanism and local attention mechanism [J]. Journal of Computer Applications, 2024, 44(2): 432-438. |
[9] | Jiachen YU, Ye YANG. Irregular object grasping by soft robotic arm based on clipped proximal policy optimization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3629-3638. |
[10] | Jie LONG, Liang XIE, Haijiao XU. Integrated deep reinforcement learning portfolio model [J]. Journal of Computer Applications, 2024, 44(1): 300-310. |
[11] | Yu WANG, Tianjun REN, Zilin FAN. Air combat maneuver decision-making of unmanned aerial vehicle based on guided Minimax-DDQN [J]. Journal of Computer Applications, 2023, 43(8): 2636-2643. |
[12] | Ziteng WANG, Yaxin YU, Zifang XIA, Jiaqi QIAO. Sparse reward exploration mechanism fusing curiosity and policy distillation [J]. Journal of Computer Applications, 2023, 43(7): 2082-2090. |
[13] | Yuan WEI, Yan LIN, Shengnan GUO, Youfang LIN, Huaiyu WAN. Prediction of taxi demands between urban regions by fusing origin-destination spatial-temporal correlation [J]. Journal of Computer Applications, 2023, 43(7): 2100-2106. |
[14] | Heping FANG, Shuguang LIU, Yongyi RAN, Kunhua ZHONG. Integrated scheduling optimization of multiple data centers based on deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(6): 1884-1892. |
[15] | Xiaolin LI, Yusang JIANG. Task offloading algorithm for UAV-assisted mobile edge computing [J]. Journal of Computer Applications, 2023, 43(6): 1893-1899. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||