Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 575-582.DOI: 10.11772/j.issn.1001-9081.2021122143
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Ruoying WANG1, Fan LYU2, Liuqing ZHAO1, Fuyuan HU1()
Received:
2021-12-22
Revised:
2022-02-28
Accepted:
2022-03-10
Online:
2023-02-08
Published:
2023-02-10
Contact:
Fuyuan HU
About author:
WANG Ruoying, born in 1998, M. S. candidate. Her research interests include image processing, deep learning, floorplan generation.Supported by:
通讯作者:
胡伏原
作者简介:
王若莹(1998—),女,浙江金华人,硕士研究生,CCF会员,主要研究方向:图像处理、深度学习、平面图生成基金资助:
CLC Number:
Ruoying WANG, Fan LYU, Liuqing ZHAO, Fuyuan HU. Floorplan generation algorithm integrating user requirements and boundary constraints[J]. Journal of Computer Applications, 2023, 43(2): 575-582.
王若莹, 吕凡, 赵柳清, 胡伏原. 融合用户需求和边界约束的平面图生成算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 575-582.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122143
方法 | FLOPs/M↓ | FID↓ | SSIM↑ |
---|---|---|---|
House-GAN | 1 404.351 | 94.59 | 0.824 |
Ashual | 4 532.051 | 178.20 | 0.588 |
本文方法 | 577.426 | 90.44 | 0.843 |
Tab. 1 Quantitative evaluation of 256×256 images generated by different methods on RPLAN dataset
方法 | FLOPs/M↓ | FID↓ | SSIM↑ |
---|---|---|---|
House-GAN | 1 404.351 | 94.59 | 0.824 |
Ashual | 4 532.051 | 178.20 | 0.588 |
本文方法 | 577.426 | 90.44 | 0.843 |
FID↓ | SSIM↑ | |||
---|---|---|---|---|
195.54 | 0.706 | |||
√ | 120.88 | 0.718 | ||
√ | √ | 108.43 | 0.757 | |
√ | √ | √ | 90.44 | 0.843 |
Tab. 2 Scores of 256×256 images generated with adding geometric boundary optimization losses on RPLAN dataset
FID↓ | SSIM↑ | |||
---|---|---|---|---|
195.54 | 0.706 | |||
√ | 120.88 | 0.718 | ||
√ | √ | 108.43 | 0.757 | |
√ | √ | √ | 90.44 | 0.843 |
FID↓ | SSIM↑ | ||
---|---|---|---|
1.0 | 1.00 | 125.99 | 0.605 |
1.0 | 0.10 | 90.44 | 0.843 |
1.0 | 0.01 | 183.76 | 0.783 |
0.1 | 0.10 | 159.60 | 0.707 |
10.0 | 0.10 | 152.13 | 0.754 |
Tab. 3 Hyperparameter analysis
FID↓ | SSIM↑ | ||
---|---|---|---|
1.0 | 1.00 | 125.99 | 0.605 |
1.0 | 0.10 | 90.44 | 0.843 |
1.0 | 0.01 | 183.76 | 0.783 |
0.1 | 0.10 | 159.60 | 0.707 |
10.0 | 0.10 | 152.13 | 0.754 |
1 | WU W M, FAN L B, LIU L G, et al. MIQP-based layout design for building interiors[J]. Computer Graphics Forum, 2018, 37(2): 511-521. 10.1111/cgf.13380 |
2 | LI X Y, ZHANG S C, HU J, et al. Image-to-image translation via hierarchical style disentanglement[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8635-8644. 10.1109/cvpr46437.2021.00853 |
3 | 孙钰,李林燕,叶子寒,等. 多层次结构生成对抗网络的文本生成图像方法[J]. 计算机应用, 2019, 39(11): 3204-3209. 10.11772/j.issn.1001-9081.2019051077 |
SUN Y, LI L Y, YE Z H, et al. Text-to-image synthesis method based on multi-level structure generative adversarial networks[J]. Journal of Computer Applications, 2019, 39(11): 3204-3209. 10.11772/j.issn.1001-9081.2019051077 | |
4 | NAUATA N, HOSSEINI S, CHANG K H, et al. House-GAN++: generative adversarial layout refinement network towards intelligent computational agent for professional architects[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13627-13636. 10.1109/cvpr46437.2021.01342 |
5 | AZIZI V, USMAN M, ZHOU H L, et al. Graph-based generative representation learning of semantically and behaviorally augmented floorplans[J]. The Visual Computer, 2022, 38(8): 2785-2800. 10.1007/s00371-021-02155-w |
6 | CHAILLOU S. ArchiGAN: artificial intelligence x architecture[M]// YUAN P F, XIE M, LEACH N, et al. Architectural Intelligence: Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019). Singapore: Springer, 2020: 117-127. 10.1007/978-981-15-6568-7_8 |
7 | MICHALEK J, CHOUDHARY R, PAPALAMBROS P. Architectural layout design optimization[J]. Engineering Optimization, 2002, 34(5): 461-484. 10.1080/03052150214016 |
8 | WU W M, FU X M, TANG R, et al. Data-driven interior plan generation for residential buildings[J]. ACM Transactions on Graphics, 2019, 38(6): No.234. 10.1145/3355089.3356556 |
9 | GUPTA K, LAZAROW J, ACHILLE A, et al. LayoutTransformer: layout generation and completion with self-attention[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 984-994. 10.1109/iccv48922.2021.00104 |
10 | ARROYO D M, POSTELS J, TOMBARI F. Variational transformer networks for layout generation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13637-13647. 10.1109/cvpr46437.2021.01343 |
11 | MERRELL P, SCHKUFZA E, KOLTUN V. Computer-generated residential building layouts[J]. ACM Transactions on Graphics, 2010, 29(6): No.181. 10.1145/1882261.1866203 |
12 | ROSSER J F, SMITH G, MORLEY J G. Data-driven estimation of building interior plans[J]. International Journal of Geographical Information Science, 2017, 31(8): 1652-1674. 10.1080/13658816.2017.1313980 |
13 | PATIL A G, LI M Y, FISHER M, et al. LayoutGMN: neural graph matching for structural layout similarity[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11043-11052. 10.1109/cvpr46437.2021.01090 |
14 | NAUATA N, CHANG K H, CHENG C Y, et al. House-GAN: relational generative adversarial networks for graph-constrained house layout generation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 162-177. |
15 | 兰红,刘秦邑. 图注意力网络的场景图到图像生成模型[J]. 中国图象图形学报, 2020, 25(8): 1591-1603. |
LAN H, LIU Q Y. Image generation from scene graph with graph attention network[J]. Journal of Image and Graphics, 2020, 25(8): 1591-1603. | |
16 | WU J Q, HUANG Z W, THOMA J, et al. Wasserstein divergence for GANs[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11209. Cham: Springer, 2018: 673-688. |
17 | ZHANG F Y, NAUATA N, FURUKAWA Y. Conv-MPN: convolutional message passing neural network for structured outdoor architecture reconstruction[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2795-2804. 10.1109/cvpr42600.2020.00287 |
18 | WEI Y X, SHI Y P, LIU X, et al. Orthogonal Jacobian regularization for unsupervised disentanglement in image generation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 6701-6710. 10.1109/iccv48922.2021.00665 |
19 | YU A, YE V, TANCIK M, et al. PixelNeRF: neural radiance fields from one or few images[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4576-4585. 10.1109/cvpr46437.2021.00455 |
20 | LI Y S, CHEN Y P, DAI X Y, et al. MicroNet: improving image recognition with extremely low flops[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 458-467. 10.1109/iccv48922.2021.00052 |
21 | ASHUAL O, WOLF L. Specifying object attributes and relations in interactive scene generation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4560-4568. 10.1109/iccv.2019.00466 |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[3] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[4] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[5] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[6] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[7] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[8] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[9] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[10] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[11] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[12] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
[13] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
[14] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[15] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||