| 1 | YULE G U. Why do we sometimes get nonsense-correlations between time-series? — a study in sampling and the nature of time-series[J]. Journal of the Royal Statistical Society, 1926, 89(1): 1-64.  10.2307/2341482 | 
																													
																							| 2 | BOX G, JENKINS G M, REINSEL G C. Time Series Analysis: Forecasting and Control[M]. San Francisco: Holden-Day, 1976: 88-126. | 
																													
																							| 3 | SIMS C A. Macroeconomics and reality[J]. Econometrica, 1980,48(1): 1-48.  10.2307/1912017 | 
																													
																							| 4 | LI X L, PAN G, WU Z H, et al. Prediction of urban human mobility using large-scale taxi traces and its applications[J]. Frontiers of Computer Science, 2012, 6(1): 111-121. | 
																													
																							| 5 | MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402.  10.1109/tits.2013.2262376 | 
																													
																							| 6 | 郭宪,沈吟东.基于梯度提升回归树的网约出租车需求预测[C]// 2018世界交通运输大会论文集.北京:人民交通出版社, 2018: 310-320. | 
																													
																							|  | GUO X, SHEN Y D. Prediction for e-hail taxi demands based on gradient boosting regression trees [C]// Proceedings of the 2018 World Transport Convention. Beijing: China Communications Press, 2018: 310-320. | 
																													
																							| 7 | SAADI I, WONG M, FAROOQ B, et al. An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service[EB/OL]. (2017-03-07) [2022-06-25]. . | 
																													
																							| 8 | KE J T, ZHENG H Y, YANG H, et al. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 591-608.  10.1016/j.trc.2017.10.016 | 
																													
																							| 9 | LeCUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.  10.1162/neco.1989.1.4.541 | 
																													
																							| 10 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.  10.1162/neco.1997.9.8.1735 | 
																													
																							| 11 | 黎景壮,温惠英,林龙,等.基于QPSO_RBF神经网络的网约车需求量预测模型[J].广西大学学报(自然科学版), 2018, 43(2): 700-709. | 
																													
																							|  | LI J Z, WEN H Y, LIN L, et al. Demand forecasting for online car-hailing services based on QPSO-RBF neural network[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(2): 700-709. | 
																													
																							| 12 | SUN J, FENG B, XU W B. Particle swarm optimization with particles having quantum behavior [C]// Proceedings of the 2004 Congress on Evolutionary Computation, Volume 1. Piscataway: IEEE, 2004: 325-331.  10.1109/cec.2004.1330875 | 
																													
																							| 13 | MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294.  10.1162/neco.1989.1.2.281 | 
																													
																							| 14 | YAO H X, WU F, KE J T, et al. Deep multi-view spatial-temporal network for taxi demand prediction [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, Palo Alto, CA: AAAI Press, 2018: 2588-2595.  10.1609/aaai.v32i1.11836 | 
																													
																							| 15 | 贾瑶.基于时空特征分析的网约车短时需求预测研究[D].北京:北京交通大学, 2019: 31-41. | 
																													
																							|  | JIA Y. Short-term demand forecasting of network car based on spatio-temporal feature analysis[D]. Beijing: Beijing Jiaotong University, 2019: 31-41. | 
																													
																							| 16 | KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.  10.1115/1.3662552 | 
																													
																							| 17 | WANG Y D, YIN H Z, CHEN H X, et al. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1227-1235.  10.1145/3292500.3330877 | 
																													
																							| 18 | FENG S Y, KE J T, YANG H, et al. A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5704-5716.  10.1109/tits.2021.3056415 | 
																													
																							| 19 | YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3634-3640.  10.24963/ijcai.2018/505 | 
																													
																							| 20 | ZHANG D P, XIAO F, SHEN M Y, et al. DNEAT: a novel dynamic node-edge attention network for origin-destination demand prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: No.102851.  10.1016/j.trc.2020.102851 | 
																													
																							| 21 | GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 922-929.  10.1609/aaai.v33i01.3301922 | 
																													
																							| 22 | BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 17804-17815.  10.1109/ijcnn52387.2021.9534063 |