Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (8): 2338-2344.DOI: 10.11772/j.issn.1001-9081.2022091337
• The 19th International Conference on Web Information Systems and Applications (WISA 2022) • Previous Articles Next Articles
Jinghong WANG1,2,3, Zhixia ZHOU1, Hui WANG4(), Haokang LI4
Received:
2022-09-06
Revised:
2022-09-27
Accepted:
2022-10-08
Online:
2022-10-13
Published:
2023-08-10
Contact:
Hui WANG
About author:
WANG Jinghong, born in 1967, Ph. D., professor. Her research interests include artificial intelligence, big data, data mining.Supported by:
通讯作者:
王辉
作者简介:
王静红(1967—),女,河北石家庄人,教授,博士,CCF会员,主要研究方向:人工智能、大数据、数据挖掘基金资助:
CLC Number:
Jinghong WANG, Zhixia ZHOU, Hui WANG, Haokang LI. Attribute network representation learning with dual auto-encoder[J]. Journal of Computer Applications, 2023, 43(8): 2338-2344.
王静红, 周志霞, 王辉, 李昊康. 双路自编码器的属性网络表示学习[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2338-2344.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091337
符号 | 含义 |
---|---|
节点集合 | |
节点之间边的集合 | |
节点属性集合 | |
网络节点数,即 | |
节点属性数,即 | |
属性矩阵,大小为 | |
邻接矩阵 | |
节点 | |
标号为 | |
节点最终表示向量的维度, | |
节点 | |
节点表示向量矩阵 | |
属性自编码器生成的节点 | |
结构自编码器生成的节点 |
Tab. 1 Symbol meaning
符号 | 含义 |
---|---|
节点集合 | |
节点之间边的集合 | |
节点属性集合 | |
网络节点数,即 | |
节点属性数,即 | |
属性矩阵,大小为 | |
邻接矩阵 | |
节点 | |
标号为 | |
节点最终表示向量的维度, | |
节点 | |
节点表示向量矩阵 | |
属性自编码器生成的节点 | |
结构自编码器生成的节点 |
数据集 | 节点数 | 边数 | 属性数 | 标签数 |
---|---|---|---|---|
Citeseer | 3 312 | 4 714 | 3 703 | 6 |
Pubmed | 19 717 | 44 338 | 500 | 3 |
Cora | 2 708 | 5 429 | 1 433 | 7 |
Wiki | 2 405 | 17 981 | 4 973 | 17 |
Tab. 2 Statistics of datasets
数据集 | 节点数 | 边数 | 属性数 | 标签数 |
---|---|---|---|---|
Citeseer | 3 312 | 4 714 | 3 703 | 6 |
Pubmed | 19 717 | 44 338 | 500 | 3 |
Cora | 2 708 | 5 429 | 1 433 | 7 |
Wiki | 2 405 | 17 981 | 4 973 | 17 |
数据集 | t | lr | 数据集 | t | lr |
---|---|---|---|---|---|
Cora | 8 | Pubmed | 35 | ||
Citeseer | 3 | Wiki | 1 |
Tab. 3 Parameter setting of different datasets
数据集 | t | lr | 数据集 | t | lr |
---|---|---|---|---|---|
Cora | 8 | Pubmed | 35 | ||
Citeseer | 3 | Wiki | 1 |
算法 | Cora | Citeseer | Pubmed | Wiki | ||||
---|---|---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | |
DeepWalk[ | 0.482 | 0.328 | 0.326 | 0.088 | 0.543 | 0.105 | 0.388 | 0.223 |
node2vec[ | 0.647 | 0.356 | 0.451 | 0.101 | 0.664 | 0.127 | 0.379 | — |
LINE[ | 0.479 | 0.433 | 0.391 | 0.225 | 0.661 | 0.387 | 0.409 | — |
TADW[ | 0.599 | 0.443 | 0.455 | 0.290 | 0.511 | 0.244 | 0.311 | 0.118 |
DANE[ | 0.702 | 0.630 | 0.479 | 0.422 | 0.694 | 0.308 | 0.473 | 0.499 |
AANE[ | 0.445 | 0.161 | 0.447 | 0.143 | 0.451 | — | 0.432 | — |
VAE[ | 0.616 | 0.490 | 0.367 | 0.223 | 0.631 | 0.248 | 0.377 | 0.374 |
VGAE[ | 0.554 | 0.407 | 0.377 | 0.281 | 0.627 | 0.333 | 0.444 | 0.299 |
ANRL[ | 0.597 | 0.431 | 0.522 | 0.399 | 0.469 | 0.305 | 0.426 | 0.344 |
DENRL | 0.775 | 0.695 | 0.705 | 0.458 | 0.709 | 0.326 | 0.468 | 0.497 |
Tab. 4 Experimental results of node clustering
算法 | Cora | Citeseer | Pubmed | Wiki | ||||
---|---|---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | |
DeepWalk[ | 0.482 | 0.328 | 0.326 | 0.088 | 0.543 | 0.105 | 0.388 | 0.223 |
node2vec[ | 0.647 | 0.356 | 0.451 | 0.101 | 0.664 | 0.127 | 0.379 | — |
LINE[ | 0.479 | 0.433 | 0.391 | 0.225 | 0.661 | 0.387 | 0.409 | — |
TADW[ | 0.599 | 0.443 | 0.455 | 0.290 | 0.511 | 0.244 | 0.311 | 0.118 |
DANE[ | 0.702 | 0.630 | 0.479 | 0.422 | 0.694 | 0.308 | 0.473 | 0.499 |
AANE[ | 0.445 | 0.161 | 0.447 | 0.143 | 0.451 | — | 0.432 | — |
VAE[ | 0.616 | 0.490 | 0.367 | 0.223 | 0.631 | 0.248 | 0.377 | 0.374 |
VGAE[ | 0.554 | 0.407 | 0.377 | 0.281 | 0.627 | 0.333 | 0.444 | 0.299 |
ANRL[ | 0.597 | 0.431 | 0.522 | 0.399 | 0.469 | 0.305 | 0.426 | 0.344 |
DENRL | 0.775 | 0.695 | 0.705 | 0.458 | 0.709 | 0.326 | 0.468 | 0.497 |
算法 | Cora | Citeseer | Pubmed | Wiki |
---|---|---|---|---|
DeepWalk | 0.629 8 | 1.263 8 | 32.746 9 | 1.499 7 |
TADW | 0.854 6 | 1.637 6 | 30.587 5 | 53.348 6 |
VAE | 0.555 4 | 0.997 8 | 22.904 5 | 17.256 7 |
VGAE | 0.506 3 | 0.905 6 | 20.000 6 | 16.497 6 |
DENRL | 0.4602 | 0.8547 | 17.4906 | 18.6905 |
Tab. 5 Comparison of average running time between DENRL algorithm and other algorithms
算法 | Cora | Citeseer | Pubmed | Wiki |
---|---|---|---|---|
DeepWalk | 0.629 8 | 1.263 8 | 32.746 9 | 1.499 7 |
TADW | 0.854 6 | 1.637 6 | 30.587 5 | 53.348 6 |
VAE | 0.555 4 | 0.997 8 | 22.904 5 | 17.256 7 |
VGAE | 0.506 3 | 0.905 6 | 20.000 6 | 16.497 6 |
DENRL | 0.4602 | 0.8547 | 17.4906 | 18.6905 |
算法 | Cora | Citeseer | ||
---|---|---|---|---|
AUC | AP | AUC | AP | |
DeepWalk | 0.803 | 0.817 | 0.732 | 0.761 |
TADW | 0.931 | 0.939 | 0.945 | 0.957 |
DANE | 0.882 | 0.895 | 0.848 | 0.846 |
VAE | 0.910 | 0.921 | 0.892 | 0.898 |
VGAE | 0.914 | 0.926 | 0.909 | 0.901 |
DENRL | 0.955 | 0.961 | 0.968 | 0.970 |
Tab. 6 Comparison of AUC and AP for link prediction
算法 | Cora | Citeseer | ||
---|---|---|---|---|
AUC | AP | AUC | AP | |
DeepWalk | 0.803 | 0.817 | 0.732 | 0.761 |
TADW | 0.931 | 0.939 | 0.945 | 0.957 |
DANE | 0.882 | 0.895 | 0.848 | 0.846 |
VAE | 0.910 | 0.921 | 0.892 | 0.898 |
VGAE | 0.914 | 0.926 | 0.909 | 0.901 |
DENRL | 0.955 | 0.961 | 0.968 | 0.970 |
模型 | ACC | ||
---|---|---|---|
Cora | Citeseer | Pubmed | |
Structure-only(M) | 0.666 | 0.699 | 0.506 |
Attribute-only(X) | 0.753 | 0.692 | 0.673 |
Str+Attribute(M+X) | 0.775 | 0.705 | 0.709 |
Tab. 7 Comparison of ablation experiment results
模型 | ACC | ||
---|---|---|---|
Cora | Citeseer | Pubmed | |
Structure-only(M) | 0.666 | 0.699 | 0.506 |
Attribute-only(X) | 0.753 | 0.692 | 0.673 |
Str+Attribute(M+X) | 0.775 | 0.705 | 0.709 |
1 | ZHOU J Y, LIU L, WEI W Q, et al. Network representation learning: from preprocessing, feature extraction to node embedding[J]. ACM Computing Surveys, 2023, 55(2): No.38. 10.1145/3491206 |
2 | AMARA A, TAIEB M A H, AOUICHA M B. Network representation learning systematic review: ancestors and current development state[J]. Machine Learning with Applications, 2021, 6: No.100130. 10.1016/j.mlwa.2021.100130 |
3 | SUN H L, HE F, HUANG J B, et al. Network embedding for community detection in attributed networks[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(3): No.36. 10.1145/3385415 |
4 | XU M J. Understanding graph embedding methods and their applications[J]. SIAM Review, 2021, 63(4): 825-853. 10.1137/20m1386062 |
5 | TONG N, TANG Y, CHEN B, et al. Representation learning using attention network and CNN for heterogeneous networks[J]. Expert Systems with Applications, 2021, 185: No.115628. 10.1016/j.eswa.2021.115628 |
6 | LIAO L Z, HE X N, ZHANG H W, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2257-2270. 10.1109/tkde.2018.2819980 |
7 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
8 | GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
9 | RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. struc2vec: Learning node representations from structural identity[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 385-394. 10.1145/3097983.3098061 |
10 | TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 10.1145/2736277.2741093 |
11 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 |
12 | YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2111-2117. 10.1609/aaai.v29i1.9448 |
13 | HUANG X, LI J D, XU X. Accelerated attributed network embedding[C]// Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2017: 633-641. 10.1137/1.9781611974973.71 |
14 | ZHAO Z Y, ZHOU H, LI C, et al. DeepEmLAN: deep embedding learning for attributed networks[J]. Information Sciences, 2021, 543: 382-397. 10.1016/j.ins.2020.07.001 |
15 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2022-12-10) [2023-03-21].. 10.1561/2200000056 |
16 | KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2022-04-22].. |
17 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.7551/mitpress/11474.003.0014 |
18 | HUANG X, SONG Q Q, LI Y N, et al. Graph recurrent networks with attributed random walks[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 732-740. 10.1145/3292500.3330941 |
19 | ZHANG Z, YANG H X, BU J J, et al. ANRL: attributed network representation learning via deep neural networks[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3155-3161. 10.24963/ijcai.2018/438 |
20 | PARK C, KIM D, HAN J, et al. Unsupervised attributed multiplex network embedding[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 5371-5378. 10.1609/aaai.v34i04.5985 |
21 | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386 |
22 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention network[EB/OL]. (2018-02-04) [2022-04-22].. |
23 | WANG X, WANG R J, SHI C, et al. Multi-component graph convolutional collaborative filtering[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 6267-6274. 10.1609/aaai.v34i04.6094 |
24 | GAO H C, HUANG H. Deep attributed network embedding[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3364-3370. 10.24963/ijcai.2018/467 |
25 | PAN Y, HU G Y, QIU J Y, et al. FLGAI: a unified network embedding framework integrating multi-scale network structures and node attribute information[J]. Applied Intelligence, 2020, 50(11): 3976-3989. 10.1007/s10489-020-01780-7 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||