Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 216-223.DOI: 10.11772/j.issn.1001-9081.2025010051

• Multimedia computing and computer simulation • Previous Articles     Next Articles

3D face generation method based on latent feature enhancement for disentanglement

Jinyu LIANG1, Hongjuan GAO1,2(), Xiaofei DU1   

  1. 1.School of Information Engineering,Ningxia University,Yinchuan Ningxia 750021,China
    2.Ningxia Key Laboratory of Artificial Intelligence and Information Security for “East Data West Computing” (Ningxia University),Yinchuan Ningxia 750021,China
  • Received:2025-01-15 Revised:2025-03-26 Accepted:2025-03-26 Online:2026-01-10 Published:2026-01-10
  • Contact: Hongjuan GAO
  • About author:LIANG Jinyu, born in 2000, M. S. candidate. His research interests include computer vision, graphics and image processing.
    DU Xiaofei, born in 1999, M. S. candidate. His research interests include computer vision, graphics and image processing.
  • Supported by:
    Key Research and Development Program of Ningxia(2023BDE03006)

基于潜在特征增强进行解耦的三维人脸生成方法

梁瑾裕1, 高宏娟1,2(), 杜晓飞1   

  1. 1.宁夏大学 信息工程学院,银川 750021
    2.宁夏“东数西算”人工智能与信息安全重点实验室(宁夏大学),银川 750021
  • 通讯作者: 高宏娟
  • 作者简介:梁瑾裕(2000—),男,宁夏中卫人,硕士研究生,主要研究方向:计算机视觉、图形图像处理
    杜晓飞(1999—),男,河南安阳人,硕士研究生,主要研究方向:计算机视觉、图形图像处理。
  • 基金资助:
    宁夏回族自治区重点研发计划项目(2023BDE03006)

Abstract:

Aiming at the problems of insufficient interpretability of latent features, limited disentanglement capability, and poor identity consistency in the existing 3D face generation methods, a 3D face generation method based on Latent Feature Enhancement for Disentanglement (LFED) was proposed. Firstly, the hierarchical clustering technique was used to construct a vector discretization module, so as to promote the potential features to absorb prior knowledge and improve the disentanglement performance. Secondly, a positional attention module was designed to integrate location information of the potential features selectively through element-by-element summation operation, so as to ensure the identity consistency of generated faces. Finally, combining prior knowledge and position information, the maximum normalization technique was used to enhance the interpretability of potential features in face generation process. Experimental results demonstrate that the proposed method achieves an accuracy of 95.67% in the latent feature disentanglement metric — Variability Predictability (VP). Compared with Swap Disentangled Variational Auto-Encoder (SD-VAE), Local Eigenprojection Disentangled Variational Auto-Encoder (LED-VAE), and Spherical Harmonic Local Eigenprojection Disentangled Variational Auto-Encoder (SHLED-VAE), the improvements are 14.96, 14.33, and 12.46 percentage points, respectively. It can be seen that the proposed method enhances disentanglement performance while maintaining good representation and reconstruction capabilities.

Key words: 3D face generation, latent variable disentanglement, positional attention, vector discretization, feature fusion

摘要:

针对现有的三维人脸生成方法中潜在特征解释性不足、解耦能力有限以及身份一致性不佳等问题,提出一种基于潜在特征增强进行解耦的三维人脸生成方法(LFED)。首先,采用层次聚类技术构建向量离散化模块,以促进潜在特征对先验知识的吸收,提升解耦性能;其次,设计位置注意力模块,通过逐元素求和操作,选择性整合潜在特征的位置信息,确保生成人脸的身份一致性;最后,结合先验知识与位置信息,采用最大归一化技术,增强潜在特征在人脸生成过程中的可解释性。实验结果表明,所提方法在潜在特征解耦指标变异可预测性(VP)上的精度达到95.67%,与小批次特征交换解纠缠方法SD-VAE (Swap Disentangled Variational Auto-Encoder)、局部特征投影解纠缠方法LED-VAE (Local Eigenprojection Disentangled Variational Auto-Encoder)和球谐函数局部特征投影方法SHLED-VAE (Latent Feature Enhanced for Disentanglement Variational Auto-Encoder )相比,分别提升了14.96、14.33和12.46个百分点。可见,所提方法在保持良好的表示与重建能力的同时,解耦性能有大幅提升。

关键词: 三维人脸生成, 潜变量解耦, 位置注意力, 向量离散化, 特征融合

CLC Number: